Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49187 by Rahul kharade last updated on 04/Dec/18

∫((sinx)/(sin4x))dx

sinxsin4xdx

Answered by MJS last updated on 04/Dec/18

∫((sin x)/(sin 4x))dx=       [t=tan (x/2) → dx=((2dt)/(t^2 +1))]  =−(1/2)∫(((t^2 +1)^2 )/((t−1)(t+1)(t−1−(√2))(t−1+(√2))(t+1−(√2))(t+1+(√2))))dt=  =−(1/2)∫(−(1/(2(t−1)))+(1/(2(t+1)))+((√2)/(4(t−1−(√2))))−((√2)/(4(t−1+(√2))))+((√2)/(4(t+1−(√2))))−((√2)/(4(t+1+(√2)))))=       [now solve with formula ∫(dt/(t+a))=ln ∣t+a∣]  =((√2)/8)ln ∣((t^2 +2(√2)t+1)/(t^2 −2(√2)t+1))∣ +(1/4)ln ∣((t−1)/(t+1))∣ =  =((√2)/8)ln ∣((1+(√2)sin x)/(1−(√2)sin x))∣ +(1/4)ln ∣(1/(tan ((x/2)+(π/4))))∣ +C

sinxsin4xdx=[t=tanx2dx=2dtt2+1]=12(t2+1)2(t1)(t+1)(t12)(t1+2)(t+12)(t+1+2)dt==12(12(t1)+12(t+1)+24(t12)24(t1+2)+24(t+12)24(t+1+2))=[nowsolvewithformuladtt+a=lnt+a]=28lnt2+22t+1t222t+1+14lnt1t+1==28ln1+2sinx12sinx+14ln1tan(x2+π4)+C

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Dec/18

∫((sinx)/(2sin2xcos2x))dx  ∫((sinx)/(2(2sinxcosx)(cos2x)))dx  ∫(dx/(4cosxcos2x))dx  ∫((cosxdx)/(4(1−sin^2 x)(1−2sin^2 x)))  ∫(dt/(4(1−t^2 )(1−2t^2 )))   t=sinx  (1/4)∫(((2−2t^2 )−(1−2t^2 ))/((1−t^2 )(1−2t^2 )))dt  (1/4)∫((2dt)/(1−2t^2 ))−(1/4)∫(dt/(1−t^2 ))  (1/2)∫(dt/(2((1/2)−t^2 )))−(1/4)∫(dt/(1−t^2 ))  (1/4)∫(dt/(((1/((√2) )))^2 −t^2 ))−(1/4)∫(dt/(1−t^2 ))  now use for mula ∫(dx/(a^2 −x^2 ))=(1/(2a))ln(((a+x)/(a−x)))+c  so (1/4)×(1/(2×(1/(√2))))ln((((1/(√2))+t)/((1/(√2))−t)))+(1/4)×(1/2)ln(((1+t)/(1−t)))+c  (1/(4(√2) ))ln(((1+(√2) sinx)/(1−(√2) sinx)))+(1/8)ln(((1+sinx)/(1−sinx)))+c  pls check...

sinx2sin2xcos2xdxsinx2(2sinxcosx)(cos2x)dxdx4cosxcos2xdxcosxdx4(1sin2x)(12sin2x)dt4(1t2)(12t2)t=sinx14(22t2)(12t2)(1t2)(12t2)dt142dt12t214dt1t212dt2(12t2)14dt1t214dt(12)2t214dt1t2nowuseformuladxa2x2=12aln(a+xax)+cso14×12×12ln(12+t12t)+14×12ln(1+t1t)+c142ln(1+2sinx12sinx)+18ln(1+sinx1sinx)+cplscheck...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com