All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 49187 by Rahul kharade last updated on 04/Dec/18
∫sinxsin4xdx
Answered by MJS last updated on 04/Dec/18
∫sinxsin4xdx=[t=tanx2→dx=2dtt2+1]=−12∫(t2+1)2(t−1)(t+1)(t−1−2)(t−1+2)(t+1−2)(t+1+2)dt==−12∫(−12(t−1)+12(t+1)+24(t−1−2)−24(t−1+2)+24(t+1−2)−24(t+1+2))=[nowsolvewithformula∫dtt+a=ln∣t+a∣]=28ln∣t2+22t+1t2−22t+1∣+14ln∣t−1t+1∣==28ln∣1+2sinx1−2sinx∣+14ln∣1tan(x2+π4)∣+C
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Dec/18
∫sinx2sin2xcos2xdx∫sinx2(2sinxcosx)(cos2x)dx∫dx4cosxcos2xdx∫cosxdx4(1−sin2x)(1−2sin2x)∫dt4(1−t2)(1−2t2)t=sinx14∫(2−2t2)−(1−2t2)(1−t2)(1−2t2)dt14∫2dt1−2t2−14∫dt1−t212∫dt2(12−t2)−14∫dt1−t214∫dt(12)2−t2−14∫dt1−t2nowuseformula∫dxa2−x2=12aln(a+xa−x)+cso14×12×12ln(12+t12−t)+14×12ln(1+t1−t)+c142ln(1+2sinx1−2sinx)+18ln(1+sinx1−sinx)+cplscheck...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com