Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 49188 by behi83417@gmail.com last updated on 04/Dec/18

solve for x,y,z∈R.  x^2 +yz=1  y^2 +xz=2  z^2 +xy=3

solveforx,y,zR.x2+yz=1y2+xz=2z2+xy=3

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

excellent problem...still to find the goal of  x  y  z...

excellentproblem...stilltofindthegoalofxyz...

Answered by ajfour last updated on 04/Dec/18

let  y=px , z=qx  ⇒  x^2 (1+pq)=1          x^2 (p^2 +q)=2         x^2 (q^2 +p)=3  if  pq≠−1   then         p^2 +q = 2+2pq         q^2 +p = 3+3pq  ⇒   q = ((p^2 −2)/(2p−1))  ⇒   (((p^2 −2)/(2p−1)))^2 +p=3+3p(((p^2 −2)/(2p−1)))  if  p≠(1/2) , then  (p^2 −2)^2 +(p−3)(2p−1)^2 =3p(2p−1)(p^2 −2)  ⇒     p^4 −4p^2 +4+4p^3 −16p^2 +13p−3                     −6p^4 +3p^3 +12p^2 −6p = 0  ⇒  5p^4 −7p^3 +8p^2 −7p−1 = 0  .....

lety=px,z=qxx2(1+pq)=1x2(p2+q)=2x2(q2+p)=3ifpq1thenp2+q=2+2pqq2+p=3+3pqq=p222p1(p222p1)2+p=3+3p(p222p1)ifp12,then(p22)2+(p3)(2p1)2=3p(2p1)(p22)p44p2+4+4p316p2+13p36p4+3p3+12p26p=05p47p3+8p27p1=0.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com