Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 49202 by rahul 19 last updated on 04/Dec/18

1) If ω is an imaginary fifth root of  unity, then find value of   log _2  ∣1+ω+ω^2 +ω^3 −(1/ω)∣ ?  2) Find value of :  (i+(√3))^(100) +(i−(√3))^(100) +2^(100)  ?

$$\left.\mathrm{1}\right)\:{If}\:\omega\:{is}\:{an}\:{imaginary}\:{fifth}\:{root}\:{of} \\ $$$${unity},\:{then}\:{find}\:{value}\:{of}\: \\ $$$$\mathrm{log}\:_{\mathrm{2}} \:\mid\mathrm{1}+\omega+\omega^{\mathrm{2}} +\omega^{\mathrm{3}} −\frac{\mathrm{1}}{\omega}\mid\:? \\ $$$$\left.\mathrm{2}\right)\:{Find}\:{value}\:{of}\:: \\ $$$$\left({i}+\sqrt{\mathrm{3}}\right)^{\mathrm{100}} +\left({i}−\sqrt{\mathrm{3}}\right)^{\mathrm{100}} +\mathrm{2}^{\mathrm{100}} \:? \\ $$

Commented by Abdo msup. last updated on 04/Dec/18

1) w^5 =1 ⇒w^5 −1=0 ⇒(w−1)(1+w+w^2 +w^3  +w^4 )=0 but w∈iR  ⇒1+w+w^2  +w^3  +w^4 =0 ⇒1+w+w^2  +w^3  =−w^4  ⇒  1+w+w^2  +w^3  −(1/w) =−(w^4  +(1/w)) =−((w^5  +1)/w) =−(2/w) ⇒  ∣1+w+w^2  +w^3 −(1/w)∣=(2/(∣w∣)) =(2/1) =2 ⇒  log_2  ∣1+w+w^2  +w^3 −(1/w)∣=log_2 (2)=1 .

$$\left.\mathrm{1}\right)\:{w}^{\mathrm{5}} =\mathrm{1}\:\Rightarrow{w}^{\mathrm{5}} −\mathrm{1}=\mathrm{0}\:\Rightarrow\left({w}−\mathrm{1}\right)\left(\mathrm{1}+{w}+{w}^{\mathrm{2}} +{w}^{\mathrm{3}} \:+{w}^{\mathrm{4}} \right)=\mathrm{0}\:{but}\:{w}\in{iR} \\ $$$$\Rightarrow\mathrm{1}+{w}+{w}^{\mathrm{2}} \:+{w}^{\mathrm{3}} \:+{w}^{\mathrm{4}} =\mathrm{0}\:\Rightarrow\mathrm{1}+{w}+{w}^{\mathrm{2}} \:+{w}^{\mathrm{3}} \:=−{w}^{\mathrm{4}} \:\Rightarrow \\ $$$$\mathrm{1}+{w}+{w}^{\mathrm{2}} \:+{w}^{\mathrm{3}} \:−\frac{\mathrm{1}}{{w}}\:=−\left({w}^{\mathrm{4}} \:+\frac{\mathrm{1}}{{w}}\right)\:=−\frac{{w}^{\mathrm{5}} \:+\mathrm{1}}{{w}}\:=−\frac{\mathrm{2}}{{w}}\:\Rightarrow \\ $$$$\mid\mathrm{1}+{w}+{w}^{\mathrm{2}} \:+{w}^{\mathrm{3}} −\frac{\mathrm{1}}{{w}}\mid=\frac{\mathrm{2}}{\mid{w}\mid}\:=\frac{\mathrm{2}}{\mathrm{1}}\:=\mathrm{2}\:\Rightarrow \\ $$$${log}_{\mathrm{2}} \:\mid\mathrm{1}+{w}+{w}^{\mathrm{2}} \:+{w}^{\mathrm{3}} −\frac{\mathrm{1}}{{w}}\mid={log}_{\mathrm{2}} \left(\mathrm{2}\right)=\mathrm{1}\:. \\ $$

Commented by Abdo msup. last updated on 04/Dec/18

2)we have i+(√3)=2(((√3)/2)+(i/2)) =2 e^(i(π/6))   and   i−(√3)=−((√3)−i)=−2 e^(−((iπ)/6)) ⇒  ((√3)+i)^(100)  +(−(√3) +i)^(100)  +2^(100)   =2^(100)  e^(i((100π)/6))  +2^(100)  e^(−i((100π)/6))  +2^(100)   =2^(101)  cos(((100π)/6))+2^(100)  but  cos(((100π)/6))=cos(((50π)/3)) =cos(((48π +2π)/3))=cos(16π +((2π)/3))  =cos(((2π)/3))=−(1/2) ⇒((√3)+i)^(100)  +(−(√3)+i)^(100)  +2^(100)   =2^(101)  .(−(1/2)) +2^(100)  =−2^(100)  +2^(100)  =0 .

$$\left.\mathrm{2}\right){we}\:{have}\:{i}+\sqrt{\mathrm{3}}=\mathrm{2}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{{i}}{\mathrm{2}}\right)\:=\mathrm{2}\:{e}^{{i}\frac{\pi}{\mathrm{6}}} \:\:{and}\: \\ $$$${i}−\sqrt{\mathrm{3}}=−\left(\sqrt{\mathrm{3}}−{i}\right)=−\mathrm{2}\:{e}^{−\frac{{i}\pi}{\mathrm{6}}} \Rightarrow \\ $$$$\left(\sqrt{\mathrm{3}}+{i}\right)^{\mathrm{100}} \:+\left(−\sqrt{\mathrm{3}}\:+{i}\right)^{\mathrm{100}} \:+\mathrm{2}^{\mathrm{100}} \\ $$$$=\mathrm{2}^{\mathrm{100}} \:{e}^{{i}\frac{\mathrm{100}\pi}{\mathrm{6}}} \:+\mathrm{2}^{\mathrm{100}} \:{e}^{−{i}\frac{\mathrm{100}\pi}{\mathrm{6}}} \:+\mathrm{2}^{\mathrm{100}} \\ $$$$=\mathrm{2}^{\mathrm{101}} \:{cos}\left(\frac{\mathrm{100}\pi}{\mathrm{6}}\right)+\mathrm{2}^{\mathrm{100}} \:{but} \\ $$$${cos}\left(\frac{\mathrm{100}\pi}{\mathrm{6}}\right)={cos}\left(\frac{\mathrm{50}\pi}{\mathrm{3}}\right)\:={cos}\left(\frac{\mathrm{48}\pi\:+\mathrm{2}\pi}{\mathrm{3}}\right)={cos}\left(\mathrm{16}\pi\:+\frac{\mathrm{2}\pi}{\mathrm{3}}\right) \\ $$$$={cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\left(\sqrt{\mathrm{3}}+{i}\right)^{\mathrm{100}} \:+\left(−\sqrt{\mathrm{3}}+{i}\right)^{\mathrm{100}} \:+\mathrm{2}^{\mathrm{100}} \\ $$$$=\mathrm{2}^{\mathrm{101}} \:.\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\:+\mathrm{2}^{\mathrm{100}} \:=−\mathrm{2}^{\mathrm{100}} \:+\mathrm{2}^{\mathrm{100}} \:=\mathrm{0}\:. \\ $$

Commented by rahul 19 last updated on 05/Dec/18

thank you prof Abdo ☺️

Commented by maxmathsup by imad last updated on 05/Dec/18

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Dec/18

2)(√3) +i  =2(((√3)/2)+i(1/2))=2(cos(π/6)+isin(π/6))=2e^(i(π/6))   i−(√3)   =−2(((√3)/2)−i(1/2))=−2e^(−i(π/6))   {(2e^(i(π/6)) )}^(100) +{(−2e^(−i(π/6)) )}^(100) +2^(100)   =2^(100) {e^(i((100π)/6)) +e^(−i((100π)/6)) }+2^(100)   =2^(100) (2cos((100π)/6))+2^(100)   cos(3000^o )=cos(8×360^o +120^o )=cos(120^o )  cos(120^o )=((−1)/2)  so ans is  2^(100) ×2×((−1)/2)+2^(100) =0

$$\left.\mathrm{2}\right)\sqrt{\mathrm{3}}\:+{i} \\ $$$$=\mathrm{2}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+{i}\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}\left({cos}\frac{\pi}{\mathrm{6}}+{isin}\frac{\pi}{\mathrm{6}}\right)=\mathrm{2}{e}^{{i}\frac{\pi}{\mathrm{6}}} \\ $$$${i}−\sqrt{\mathrm{3}}\: \\ $$$$=−\mathrm{2}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−{i}\frac{\mathrm{1}}{\mathrm{2}}\right)=−\mathrm{2}{e}^{−{i}\frac{\pi}{\mathrm{6}}} \\ $$$$\left\{\left(\mathrm{2}{e}^{{i}\frac{\pi}{\mathrm{6}}} \right)\right\}^{\mathrm{100}} +\left\{\left(−\mathrm{2}{e}^{−{i}\frac{\pi}{\mathrm{6}}} \right)\right\}^{\mathrm{100}} +\mathrm{2}^{\mathrm{100}} \\ $$$$=\mathrm{2}^{\mathrm{100}} \left\{{e}^{{i}\frac{\mathrm{100}\pi}{\mathrm{6}}} +{e}^{−{i}\frac{\mathrm{100}\pi}{\mathrm{6}}} \right\}+\mathrm{2}^{\mathrm{100}} \\ $$$$=\mathrm{2}^{\mathrm{100}} \left(\mathrm{2}{cos}\frac{\mathrm{100}\pi}{\mathrm{6}}\right)+\mathrm{2}^{\mathrm{100}} \\ $$$${cos}\left(\mathrm{3000}^{{o}} \right)={cos}\left(\mathrm{8}×\mathrm{360}^{{o}} +\mathrm{120}^{{o}} \right)={cos}\left(\mathrm{120}^{{o}} \right) \\ $$$${cos}\left(\mathrm{120}^{{o}} \right)=\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$${so}\:{ans}\:{is} \\ $$$$\mathrm{2}^{\mathrm{100}} ×\mathrm{2}×\frac{−\mathrm{1}}{\mathrm{2}}+\mathrm{2}^{\mathrm{100}} =\mathrm{0} \\ $$$$ \\ $$

Commented by rahul 19 last updated on 05/Dec/18

thank you sir! ����

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Dec/18

1)x^5 =1  (x−1)(x^4 +x^3 +x^2 +x+1)=0  w^4 +w^3 +w^2 +w+1=0    1+w+w^2 +w^3 −(1/w)  =−w^4 −(1/w)  =((−w^5 −1)/w)=((−1−1)/1)=−2  so ∣1+w+w^2 +w^3 −(1/w)∣=∣−2∣=2  hence ln_2 2=1

$$\left.\mathrm{1}\right){x}^{\mathrm{5}} =\mathrm{1} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${w}^{\mathrm{4}} +{w}^{\mathrm{3}} +{w}^{\mathrm{2}} +{w}+\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{1}+{w}+{w}^{\mathrm{2}} +{w}^{\mathrm{3}} −\frac{\mathrm{1}}{{w}} \\ $$$$=−{w}^{\mathrm{4}} −\frac{\mathrm{1}}{{w}} \\ $$$$=\frac{−{w}^{\mathrm{5}} −\mathrm{1}}{{w}}=\frac{−\mathrm{1}−\mathrm{1}}{\mathrm{1}}=−\mathrm{2} \\ $$$${so}\:\mid\mathrm{1}+{w}+{w}^{\mathrm{2}} +{w}^{\mathrm{3}} −\frac{\mathrm{1}}{{w}}\mid=\mid−\mathrm{2}\mid=\mathrm{2} \\ $$$${hence}\:{ln}_{\mathrm{2}} \mathrm{2}=\mathrm{1} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com