Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49232 by Abdo msup. last updated on 04/Dec/18

let f(a)= ∫_(−∞) ^(+∞) cos(x^2  +ax +1)dx  1)calculate f(a) and f^′ (a)  2) find  f^((n)) (a)

letf(a)=+cos(x2+ax+1)dx1)calculatef(a)andf(a)2)findf(n)(a)

Commented by Abdo msup. last updated on 06/Dec/18

letg(a)=∫_(−∞) ^(+∞)  sin(x^2  +ax+1)dx we hsve  f(a)−ig(a) =∫_(−∞) ^(+∞)  e^(−i(x^2 +ax+1)) dx  =∫_(−∞) ^(+∞)   e^(−i(x^(2 )  +2(a/2)x +(a^2 /4) +1−(a^2 /4))) dx  =e^(−i(1−(a^2 /4)))  ∫_(−∞) ^(+∞)   e^(−((√i)(x+(a/2)))^2 ) dx  =_((√i)(x+(a/2)) =u)     e^(−i(1−(a^2 /4)))  ∫_(−∞) ^(+∞)   e^(−u^2 ) (du/(√i))  =(√π)  e^(−i(1−(a^2 /4)))  e^(−((iπ)/4))  =(√π) e^(−i(1+(π/4)−(a^2 /2)))   (√π){cos(1+(π/4)−(a^2 /4))−isin(1+(π/4)−(a^2 /4))} ⇒  f(a) =(√π)cos(1+(π/4)−(a^2 /4)) also wehave  g(a) =(√π)sin(1+(π/4) −(a^2 /4)).

letg(a)=+sin(x2+ax+1)dxwehsvef(a)ig(a)=+ei(x2+ax+1)dx=+ei(x2+2a2x+a24+1a24)dx=ei(1a24)+e(i(x+a2))2dx=i(x+a2)=uei(1a24)+eu2dui=πei(1a24)eiπ4=πei(1+π4a22)π{cos(1+π4a24)isin(1+π4a24)}f(a)=πcos(1+π4a24)alsowehaveg(a)=πsin(1+π4a24).

Commented by Abdo msup. last updated on 06/Dec/18

f^′ (a) =−(√π)(−(a/2))sin(1+(π/4) −(a^2 /4))  =((a(√π))/2) sin(1+(π/4)−(a^2 /4)) .

f(a)=π(a2)sin(1+π4a24)=aπ2sin(1+π4a24).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com