All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 49232 by Abdo msup. last updated on 04/Dec/18
letf(a)=∫−∞+∞cos(x2+ax+1)dx1)calculatef(a)andf′(a)2)findf(n)(a)
Commented by Abdo msup. last updated on 06/Dec/18
letg(a)=∫−∞+∞sin(x2+ax+1)dxwehsvef(a)−ig(a)=∫−∞+∞e−i(x2+ax+1)dx=∫−∞+∞e−i(x2+2a2x+a24+1−a24)dx=e−i(1−a24)∫−∞+∞e−(i(x+a2))2dx=i(x+a2)=ue−i(1−a24)∫−∞+∞e−u2dui=πe−i(1−a24)e−iπ4=πe−i(1+π4−a22)π{cos(1+π4−a24)−isin(1+π4−a24)}⇒f(a)=πcos(1+π4−a24)alsowehaveg(a)=πsin(1+π4−a24).
f′(a)=−π(−a2)sin(1+π4−a24)=aπ2sin(1+π4−a24).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com