Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 49272 by rahul 19 last updated on 05/Dec/18

ZεC satisfies the condition ∣Z∣≥3.  Then find the least value of ∣Z+(1/Z)∣ ?

$${Z}\epsilon\mathbb{C}\:{satisfies}\:{the}\:{condition}\:\mid{Z}\mid\geqslant\mathrm{3}. \\ $$$${Then}\:{find}\:{the}\:{least}\:{value}\:{of}\:\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid\:? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

Commented by rahul 19 last updated on 05/Dec/18

thank you sir! ��

Answered by mr W last updated on 05/Dec/18

Z=r(cos θ+i sin θ)  ∣Z∣=r≥3    Z+(1/Z)=r(cos θ+i sin θ)+(1/(r(cos θ+i sin θ)))  Z+(1/Z)=r(cos θ+i sin θ)+((cos θ−i sin θ)/r)  Z+(1/Z)=(r+(1/r))cos θ+i (r−(1/r))sin θ  Z+(1/Z)=(1/r)[(r^2 +1)cos θ+i (r^2 −1)sin θ]  ∣Z+(1/Z)∣=(1/r)(√((r^2 +1)^2 cos^2  θ+(r^2 −1)^2 sin^2  θ))  ∣Z+(1/Z)∣=(1/r)(√((r^2 +1)^2 −[(r^2 +1)^2 −(r^2 −1)^2 ]sin^2  θ))  ∣Z+(1/Z)∣=(1/r)(√((r^2 +1)^2 −4r^2 sin^2  θ))  ∣Z+(1/Z)∣=(√((r+(1/r))^2 −4sin^2  θ))  ≥(√((r+(1/r))^2 −4))  =(√((r−(1/r))^2 ))  =∣r−(1/r)∣ (increasing function upon r=1)  ≥∣3−(1/3)∣=(8/3)=2.67

$${Z}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right) \\ $$$$\mid{Z}\mid={r}\geqslant\mathrm{3} \\ $$$$ \\ $$$${Z}+\frac{\mathrm{1}}{{Z}}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)+\frac{\mathrm{1}}{{r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)} \\ $$$${Z}+\frac{\mathrm{1}}{{Z}}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)+\frac{\mathrm{cos}\:\theta−{i}\:\mathrm{sin}\:\theta}{{r}} \\ $$$${Z}+\frac{\mathrm{1}}{{Z}}=\left({r}+\frac{\mathrm{1}}{{r}}\right)\mathrm{cos}\:\theta+{i}\:\left({r}−\frac{\mathrm{1}}{{r}}\right)\mathrm{sin}\:\theta \\ $$$${Z}+\frac{\mathrm{1}}{{Z}}=\frac{\mathrm{1}}{{r}}\left[\left({r}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{cos}\:\theta+{i}\:\left({r}^{\mathrm{2}} −\mathrm{1}\right)\mathrm{sin}\:\theta\right] \\ $$$$\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid=\frac{\mathrm{1}}{{r}}\sqrt{\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+\left({r}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid=\frac{\mathrm{1}}{{r}}\sqrt{\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\left[\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\left({r}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \right]\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid=\frac{\mathrm{1}}{{r}}\sqrt{\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid=\sqrt{\left({r}+\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} −\mathrm{4sin}^{\mathrm{2}} \:\theta} \\ $$$$\geqslant\sqrt{\left({r}+\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} −\mathrm{4}} \\ $$$$=\sqrt{\left({r}−\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} } \\ $$$$=\mid{r}−\frac{\mathrm{1}}{{r}}\mid\:\left({increasing}\:{function}\:{upon}\:{r}=\mathrm{1}\right) \\ $$$$\geqslant\mid\mathrm{3}−\frac{\mathrm{1}}{\mathrm{3}}\mid=\frac{\mathrm{8}}{\mathrm{3}}=\mathrm{2}.\mathrm{67} \\ $$

Commented by rahul 19 last updated on 05/Dec/18

thank you sir! ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com