Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 49299 by peter frank last updated on 05/Dec/18

Commented by maxmathsup by imad last updated on 05/Dec/18

a) let I =∫  ((x e^(2x) )/((1+2x)^2 ))dx  changement 2x =t give  I =∫ ((te^t )/(2(1+t)^2 )) (dt/2) =(1/4) ∫  ((t e^t )/((1+t)^2 ))dt  but   (d/dt)((e^t /(1+t)))=((e^t (1+t)−e^t )/((1+t)^2 )) =((t e^t )/((1+t)^2 )) ⇒  I =(1/4) (e^t /(t+1)) +c =(e^(2x) /(4(2x+1))) +c .

a)letI=xe2x(1+2x)2dxchangement2x=tgiveI=tet2(1+t)2dt2=14tet(1+t)2dtbutddt(et1+t)=et(1+t)et(1+t)2=tet(1+t)2I=14ett+1+c=e2x4(2x+1)+c.

Commented by Abdo msup. last updated on 05/Dec/18

b) let A =∫_1 ^2   (dx/(x^2 (√(5x^2 −1)))) ⇒A =(1/(√5))∫_1 ^2    (dx/(x^2 (√(x^2 −(1/5)))))  =_(x =(1/(√5))ch(t))    (1/(5(√5))) ∫_(argch((√5))) ^(argch(2(√5)))      ((sh(t)dt)/((1/5)ch^2 tsh(t)))  =(1/(√5)) ∫_(ln((√5)+2)) ^(ln(2(√5)+(√(19))))  ((2dt)/(1+ch(2t)))  =(2/(√5)) ∫_(ln(2+(√5))) ^(ln((√(19)) +2(√5){)    (dt/(1+((e^(2t)  +e^(−2t) )/2)))  =(4/(√5)) ∫_(ln(2+(√5))) ^(ln((√(19)) +2(√5)))     (dt/(2 +e^(2t)  +e^(−2t) ))  =_(e^(2t) =u)   (4/(√5))  ∫_((2+(√5))^2 ) ^(((√(19))+2(√5))^2 )       (du/(2(2 +u +u^(−1) )u))  =(2/(√5)) ∫_((2+(√5))^2 ) ^(((√(19)) +2(√5))^2 )   (du/(2u +u^2  +1))  =(2/(√5)) ∫_((2+(√5))^2 ) ^(((√(19))+2(√5))^2 )   (du/((u+1)^2 )) =(2/(√5))[−(1/(1+u))]_((2+(√5))^2 ) ^(((√(19))+2(√5))^2 )   =(2/(√5)){  (1/(1+(2+(√5))^2 )) −(1/(1+((√(19))+2(√5))^2 ))} .  =

b)letA=12dxx25x21A=1512dxx2x215=x=15ch(t)155argch(5)argch(25)sh(t)dt15ch2tsh(t)=15ln(5+2)ln(25+19)2dt1+ch(2t)=25ln(2+5)ln(19+25{dt1+e2t+e2t2=45ln(2+5)ln(19+25)dt2+e2t+e2t=e2t=u45(2+5)2(19+25)2du2(2+u+u1)u=25(2+5)2(19+25)2du2u+u2+1=25(2+5)2(19+25)2du(u+1)2=25[11+u](2+5)2(19+25)2=25{11+(2+5)211+(19+25)2}.=

Commented by peter frank last updated on 06/Dec/18

thank you sir

thankyousir

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

V=πr^2 h  (dV/dt)=πr^2 (dh/dt)+πh×2r×(dr/dt)  (dV/dt)=π{8^2 ×(−0.5)+2×8×12×0.2}        =π(−32+38.4)     =6.4×π

V=πr2hdVdt=πr2dhdt+πh×2r×drdtdVdt=π{82×(0.5)+2×8×12×0.2}=π(32+38.4)=6.4×π

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

∫((xe^(2x) )/((1+2x)^2 ))dx  =(1/2)∫(((1+2x−1)e^(2x) )/((1+2x)^2 ))dx  =(1/2)∫(((1+2x)e^(2x) −e^(2x) )/((1+2x)^2 ))dx  =(1/4)∫(((1+2x)((d(e^(2x) ))/dx)−e^(2x) ×(d/dx)(1+2x))/((1+2x)^2 ))dx  =(1/4)∫(d/dx)((e^(2x) /(1+2x)))dx  =(1/4)∫d((e^(2x) /(1+2x)))  =(1/4)×(e^(2x) /(1+2x))+c

xe2x(1+2x)2dx=12(1+2x1)e2x(1+2x)2dx=12(1+2x)e2xe2x(1+2x)2dx=14(1+2x)d(e2x)dxe2x×ddx(1+2x)(1+2x)2dx=14ddx(e2x1+2x)dx=14d(e2x1+2x)=14×e2x1+2x+c

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

∫_1 ^2 (dx/(x^2 (√(5x^2 −1))))  I=∫(dx/(x^2 (√(5x^2 −1))))  x=(1/t)    dx=((−dt)/t^2 )  ∫((−dt)/(t^2 ×(1/t^(2 ) )×(√(5((1/t))^2 −1))))  ∫((−t×dt)/(√(5−t^2 )))  (1/2)∫((d(5−t^2 ))/(√(5−t^2 )))  =(1/2)×(((5−t^2 )^(((−1)/2)+1) )/(((−1)/2)+1))+c  =(√(5−t^2 )) +c  =(√(5−(1/x^2 ))) +c  so answer of resuired intregal is  ∣(√(5−(1/x^2 ) )) ∣_1 ^2   =(√(5−(1/4)))  −(√(5−(1/1)))   =((√(19))/2)−2

12dxx25x21I=dxx25x21x=1tdx=dtt2dtt2×1t2×5(1t)21t×dt5t212d(5t2)5t2=12×(5t2)12+112+1+c=5t2+c=51x2+csoanswerofresuiredintregalis51x212=514511=1922

Terms of Service

Privacy Policy

Contact: info@tinkutara.com