Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 49331 by rahul 19 last updated on 05/Dec/18

Find :  arg( (((2(√3)+2i)^8 )/((1−i)^6 ))  + (((1+i)^6 )/((2(√3)−2i)^8 ))) ?

Find:arg((23+2i)8(1i)6+(1+i)6(232i)8)?

Commented by maxmathsup by imad last updated on 05/Dec/18

let u =2(√3)+2i and v=1+i ⇒  A =(((2(√3)+2i)^8 )/((1−i)^6 )) +(((1+i)^6 )/((2(√3)−2i)^8 )) =(((u .u^− )^8  +(v.v^− )^6 )/(v^−^6  .u^−^8  ))  we have ∣u∣ =2∣(√3)+i∣ =2.2=4 ⇒(u.u^− )^8  =(4^2 )^8 =4^(16)   v =1+i ⇒∣v∣ =(√2) ⇒(v.v^− )^6  =2^6  ⇒A =((4^(16)  +2^6 )/(u^−^8   .v^−^6  )) ⇒  arg(A)=−arg( u^−^8  .v^−^6  ) ≡−8arg(u^− )−6 arg(v^− ) [2π] but  v =(√2)e^((iπ)/4)  ⇒ v^−  =(√2)e^(−((iπ)/4))  ⇒arg(v^− ) ≡−(π/4)[2π]  also we have u =4(((√3)/2) +(i/2))=4 e^((iπ)/6)  ⇒u^− =4 e^(−((iπ)/6))  ⇒arg(u^− )≡−(π/6)[2π] ⇒  arg(A)≡((8π)/6) +((6π)/4)[2π] ⇒ arg(A)≡ ((4π)/3) +((3π)/2)[2π] ⇒ arg(A)≡ ((17π)/6)[2π] but  ((17π)/6) =2π +((5π)/6) ≡((5π)/6) ⇒ arg(A)≡((5π)/6)[2π] .

letu=23+2iandv=1+iA=(23+2i)8(1i)6+(1+i)6(232i)8=(u.u)8+(v.v)6v6.u8wehaveu=23+i=2.2=4(u.u)8=(42)8=416v=1+i⇒∣v=2(v.v)6=26A=416+26u8.v6arg(A)=arg(u8.v6)8arg(u)6arg(v)[2π]butv=2eiπ4v=2eiπ4arg(v)π4[2π]alsowehaveu=4(32+i2)=4eiπ6u=4eiπ6arg(u)π6[2π]arg(A)8π6+6π4[2π]arg(A)4π3+3π2[2π]arg(A)17π6[2π]but17π6=2π+5π65π6arg(A)5π6[2π].

Commented by rahul 19 last updated on 05/Dec/18

I′m getting ((5π)/3)   Ans. is ((5π)/6)  Kindly check...

Imgetting5π3Ans.is5π6Kindlycheck...

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

a=(2(√3) +2i)  a=4(((2(√3))/4)+(2/4)i)=4(cos(π/6)+isin(π/6))=4e^((iπ)/6)   b=(1+i)=(√2) ((1/(√2))+i(1/(√2)))=(√2) e^((iπ)/4)   {(((4e^((iπ)/6) )^8 )/(((√2) e^((−iπ)/4) )^6 ))+((((√2) e^((iπ)/4) )^6 )/((4e^((−iπ)/6) )^8 ))}  ={(2^(16) /2^3 )×e^(((i4π)/3)+((i3π)/2)) +(2^3 /2^(16) )×e^(((i3π)/2)+((i4π)/3)) }  =e^((i17π)/6) ×(2^(13) +2^(−13) )  now [cos(((17π)/6))+isin((17π)/6)]×(2^(13) +2^(−13) )  =[cos(2π+((5π)/6))+isin(2π+((5π)/6))]×(2^(13) +2^(−13) )  =[cos(((5π)/6))+isin(((5π)/6))]×(2^(13) +2^(−13) )      so tanθ=tan(((5π)/6))   θ=((5π)/6)

a=(23+2i)a=4(234+24i)=4(cosπ6+isinπ6)=4eiπ6b=(1+i)=2(12+i12)=2eiπ4{(4eiπ6)8(2eiπ4)6+(2eiπ4)6(4eiπ6)8}={21623×ei4π3+i3π2+23216×ei3π2+i4π3}=ei17π6×(213+213)now[cos(17π6)+isin17π6]×(213+213)=[cos(2π+5π6)+isin(2π+5π6)]×(213+213)=[cos(5π6)+isin(5π6)]×(213+213)sotanθ=tan(5π6)θ=5π6

Commented by maxmathsup by imad last updated on 05/Dec/18

correct answer thanks sir Tanmay.

correctanswerthankssirTanmay.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com