Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49343 by maxmathsup by imad last updated on 05/Dec/18

find ∫_0 ^1   ((ln(x))/(1+x))dx .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}}{dx}\:. \\ $$

Commented by Abdo msup. last updated on 08/Dec/18

let give this integral at form of serie  I =∫_0 ^1  ((ln(x))/(1+x))dx =∫_0 ^1 ln(x)(Σ_(n=0) ^∞ (−1)^n x^n )  =Σ_(n=0) ^∞  (−1)^n   ∫_0 ^1 x^n ln(x)dx=Σ_(n=0) ^∞ (−1)^n  A_n   by parts A_n =∫_0 ^1 x^n ln(x)dx =[(1/(n+1))x^(n+1) ln(x)]_0 ^1   −∫_0 ^1   (1/(n+1)) x^n dx  =−(1/((n+1)^2 )) ⇒ I =Σ_(n=0) ^∞  (((−1)^(n+1) )/((n+1)^2 )) =Σ_(n=1) ^∞  (((−1)^n )/n^2 )  but  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(1/4)Σ_(n=1) ^∞  (1/n^2 ) −Σ_(n=0) ^∞   (1/((2n+1)^2 ))  =(1/4)(π^2 /6) −Σ_(n=0) ^∞  (1/((2n+1)^2 )) but  Σ_(n=1) ^∞   (1/n^2 ) =(1/4)Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(3/4)(π^2 /6) =(π^2 /8) ⇒  I =(π^2 /(24)) −(π^2 /8) =((π^2 −3π^2 )/(24)) =−(π^2 /(12)) .

$${let}\:{give}\:{this}\:{integral}\:{at}\:{form}\:{of}\:{serie} \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}}{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {ln}\left({x}\right){dx}=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{A}_{{n}} \\ $$$${by}\:{parts}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {ln}\left({x}\right){dx}\:=\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} {ln}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:{x}^{{n}} {dx} \\ $$$$=−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\:{I}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} } \\ $$$${but}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{4}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:{but} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{4}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\mathrm{3}}{\mathrm{4}}\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\Rightarrow \\ $$$${I}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{24}}\:−\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:=\frac{\pi^{\mathrm{2}} −\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{24}}\:=−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:. \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com