Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49344 by maxmathsup by imad last updated on 05/Dec/18

let α>0 calculate ∫_(−∞) ^(+∞)  (1+αi)^(−x^2 ) dx .

letα>0calculate+(1+αi)x2dx.

Commented byAbdo msup. last updated on 06/Dec/18

let A =∫_(−∞) ^(+∞) (1+αi)^(−x^2 ) dx ⇒A =∫_(−∞) ^(+∞)  e^(−x^2 ln(1+αi)) dx  =_(x(√(ln(1+αi)))=t)     ∫_(−∞) ^(+∞)   e^(−t^2 )   (dt/(√(ln(1+αi))))  =((√π)/(√(ln(1+αi))))  but 1+αi =(√(1+α^2 ))((1/(√(1+α^2 ))) +i(α/(√(1+α^2 ))))  =r e^(iθ)  ⇒r =(1+α^2 )^(1/2)   and  tanθ =α ⇒θ =arctan(α) ⇒  ln(1+αi)=ln(r)+iθ =(1/2)ln(1+α^2 )+iarctan(α) ⇒  A = ((√π)/(√((1/2)ln(1+α^2 )+i arctan(α))))  leyZ=(1/2)ln(1+α^2 )+i arctan(α)  we have ∣Z∣=(√((1/4)ln^2 (1+α^2 )+arctan^2 (α))) ⇒  Z =∣Z∣{((ln(1+α^2 ))/(2(√((1/4)ln^2 (1+α^2 )+arctan^2 (α))))) +i((arctan(α))/(√((1/4)ln^2 (1+α^2 )+arctan^2 (α))))}  =r e^(iθ)   ⇒r =∣Z∣ and tanθ = ((2arctan(α))/(ln(1+α^2 ))) ⇒  θ =arctan(2 ((arctan(α))/(ln(1+α^2 ))))...be continued...

letA=+(1+αi)x2dxA=+ex2ln(1+αi)dx =xln(1+αi)=t+et2dtln(1+αi) =πln(1+αi)but1+αi=1+α2(11+α2+iα1+α2) =reiθr=(1+α2)12andtanθ=αθ=arctan(α) ln(1+αi)=ln(r)+iθ=12ln(1+α2)+iarctan(α) A=π12ln(1+α2)+iarctan(α)leyZ=12ln(1+α2)+iarctan(α) wehaveZ∣=14ln2(1+α2)+arctan2(α) Z=∣Z{ln(1+α2)214ln2(1+α2)+arctan2(α)+iarctan(α)14ln2(1+α2)+arctan2(α)} =reiθr=∣Zandtanθ=2arctan(α)ln(1+α2) θ=arctan(2arctan(α)ln(1+α2))...becontinued...

Answered by Smail last updated on 06/Dec/18

(1+αi)^(−x^2 ) =e^(−x^2 ln(1+αi))   u=x(√(ln(1+αi)))  dx=(du/(√(ln(1+αi))))  ∫_(−∞) ^∞ (1+αi)^(−x^2 ) dx=(1/(√(ln(1+αi))))∫_(−∞) ^∞ e^(−u^2 ) du  =((√π)/(√(ln(1+αi))))

(1+αi)x2=ex2ln(1+αi) u=xln(1+αi) dx=duln(1+αi) (1+αi)x2dx=1ln(1+αi)eu2du =πln(1+αi)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com