All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 49344 by maxmathsup by imad last updated on 05/Dec/18
letα>0calculate∫−∞+∞(1+αi)−x2dx.
Commented byAbdo msup. last updated on 06/Dec/18
letA=∫−∞+∞(1+αi)−x2dx⇒A=∫−∞+∞e−x2ln(1+αi)dx =xln(1+αi)=t∫−∞+∞e−t2dtln(1+αi) =πln(1+αi)but1+αi=1+α2(11+α2+iα1+α2) =reiθ⇒r=(1+α2)12andtanθ=α⇒θ=arctan(α)⇒ ln(1+αi)=ln(r)+iθ=12ln(1+α2)+iarctan(α)⇒ A=π12ln(1+α2)+iarctan(α)leyZ=12ln(1+α2)+iarctan(α) wehave∣Z∣=14ln2(1+α2)+arctan2(α)⇒ Z=∣Z∣{ln(1+α2)214ln2(1+α2)+arctan2(α)+iarctan(α)14ln2(1+α2)+arctan2(α)} =reiθ⇒r=∣Z∣andtanθ=2arctan(α)ln(1+α2)⇒ θ=arctan(2arctan(α)ln(1+α2))...becontinued...
Answered by Smail last updated on 06/Dec/18
(1+αi)−x2=e−x2ln(1+αi) u=xln(1+αi) dx=duln(1+αi) ∫−∞∞(1+αi)−x2dx=1ln(1+αi)∫−∞∞e−u2du =πln(1+αi)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com