Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 49433 by behi83417@gmail.com last updated on 06/Dec/18

Commented by ajfour last updated on 06/Dec/18

circle radius, Sir ?

circleradius,Sir?

Commented by behi83417@gmail.com last updated on 06/Dec/18

BC=x,DC=y,circle radius=r .  find BD,in terms of:x,y,r  .

BC=x,DC=y,circleradius=r.findBD,intermsof:x,y,r.

Commented by behi83417@gmail.com last updated on 07/Dec/18

BD=a  ∡BAD=α=BC^⌢ D  ∡BCD=β=((BD^⌢ )/2)=((360−BC^⌢ D)/2)=180−((BC^⌢ D)/2)  cosBC^� D=−cos((1/2)BA^� D)  cos^2 β=((1+cosα)/2)⇒2cos^2 β−cosα=1  2(((x^2 +y^2 −a^2 )/(2xy)))^2 −((2r^2 −a^2 )/(2r^2 ))=1⇒  4r^2 (x^2 +y^2 −a^2 )^2 −4x^2 y^2 (2r^2 −a^2 )=8r^2 x^2 y^2   4r^2 a^4 −4a^2 [2r^2 (x^2 +y^2 )−x^2 y^2 ]+4r^2 (x^2 +y^2 )^2 −16x^2 y^2 r^2 =0

BD=aBAD=α=BCDBCD=β=BD2=360BCD2=180BCD2cosBCD=cos(12BAD)cos2β=1+cosα22cos2βcosα=12(x2+y2a22xy)22r2a22r2=14r2(x2+y2a2)24x2y2(2r2a2)=8r2x2y24r2a44a2[2r2(x2+y2)x2y2]+4r2(x2+y2)216x2y2r2=0

Commented by behi83417@gmail.com last updated on 07/Dec/18

you are right sir.this is my typo.now  it is fixed.thanks a lot for attention.

youarerightsir.thisismytypo.nowitisfixed.thanksalotforattention.

Commented by mr W last updated on 07/Dec/18

sir, but your eqn. differs from mine.  yours is after rearrangement  a^4 −[(x^2 +y^2 )−((x^2 y^2 )/r^2 )]a^2 +(x^2 −y^2 )^2 =0  mine  a^4 −[2(x^2 +y^2 )−((x^2 y^2 )/r^2 )]a^2 +(x^2 −y^2 )^2 =0  can you please check?

sir,butyoureqn.differsfrommine.yoursisafterrearrangementa4[(x2+y2)x2y2r2]a2+(x2y2)2=0minea4[2(x2+y2)x2y2r2]a2+(x2y2)2=0canyoupleasecheck?

Commented by mr W last updated on 07/Dec/18

thanks for checking sir!

thanksforcheckingsir!

Answered by mr W last updated on 06/Dec/18

let a=BD  R=((xya)/(√((x+y+a)(−x+y+a)(x−y+a)(x+y−a))))  R=((xya)/(√([(x+y)^2 −a^2 ][a^2 −(x−y)^2 ])))  [(x+y)^2 −a^2 ][a^2 −(x−y)^2 ]=(((xy)/R))^2 a^2   a^4 −[2(x^2 +y^2 )−(((xy)/R))^2 ]a^2 +(x^2 −y^2 )^2 =0  a^2 =((2(x^2 +y^2 )−(((xy)/R))^2 ±(√([2(x^2 +y^2 )−(((xy)/R))^2 ]^2 −4(x^2 −y^2 )^2 )))/2)  a^2 =((2(x^2 +y^2 )−(((xy)/R))^2 ±(√([4x^2 −(((xy)/R))^2 ][4y^2 −(((xy)/R))^2 ])))/2)  a^2 =((2(x^2 +y^2 )−(((xy)/R))^2 ±(√((2x+((xy)/R))(2x−((xy)/R))(2y+((xy)/R))(2y−((xy)/R)))))/2)  ⇒a=(√((2(x^2 +y^2 )−(((xy)/R))^2 ±(√((2x+((xy)/R))(2x−((xy)/R))(2y+((xy)/R))(2y−((xy)/R)))))/2))

leta=BDR=xya(x+y+a)(x+y+a)(xy+a)(x+ya)R=xya[(x+y)2a2][a2(xy)2][(x+y)2a2][a2(xy)2]=(xyR)2a2a4[2(x2+y2)(xyR)2]a2+(x2y2)2=0a2=2(x2+y2)(xyR)2±[2(x2+y2)(xyR)2]24(x2y2)22a2=2(x2+y2)(xyR)2±[4x2(xyR)2][4y2(xyR)2]2a2=2(x2+y2)(xyR)2±(2x+xyR)(2xxyR)(2y+xyR)(2yxyR)2a=2(x2+y2)(xyR)2±(2x+xyR)(2xxyR)(2y+xyR)(2yxyR)2

Commented by behi83417@gmail.com last updated on 06/Dec/18

wow! perfect sir.thanks in advance.

wow!perfectsir.thanksinadvance.

Commented by mr W last updated on 07/Dec/18

check with x=y=(√2)R  ⇒a=(√((2(4R^2 )−(2R)^2 ±(√((2(√2)R+2R)^2 (2(√2)R−2R)^2 )))/2))  ⇒a=(√((4R^2 ±4R^2 )/2))=2R or 0⇒correct

checkwithx=y=2Ra=2(4R2)(2R)2±(22R+2R)2(22R2R)22a=4R2±4R22=2Ror0correct

Answered by behi83417@gmail.com last updated on 06/Dec/18

Commented by behi83417@gmail.com last updated on 06/Dec/18

∡FBC=∡FDC=90^•   BF^2 =4r^2 −x^2 ,DF^2 =4r^2 −y^2   by using petolemy′s teorem in:FDCB:  BD.CF=BC.DF+BF.CD  2r.BD=x.(√(4r^2 −y^2 ))+y.(√(4r^2 −x^2 ))  ⇒BD=((x.(√(4r^2 −y^2 ))+y.(√(4r^2 −x^2 )))/(2r)) .■

FBC=FDC=90BF2=4r2x2,DF2=4r2y2byusingpetolemysteoremin:FDCB:BD.CF=BC.DF+BF.CD2r.BD=x.4r2y2+y.4r2x2BD=x.4r2y2+y.4r2x22r.

Commented by behi83417@gmail.com last updated on 07/Dec/18

chech for:x=y=r(√2)  BD=((r(√2).r(√2)+r(√2).r(√2))/(2r))=((4r^2 )/(2r))=2r [ok].

chechfor:x=y=r2BD=r2.r2+r2.r22r=4r22r=2r[ok].

Answered by behi83417@gmail.com last updated on 07/Dec/18

∡BAC=α,∡DAC=β  cosα=((2r^2 −x^2 )/(2r^2 )),sinα=(x/(2r^2 ))(√(4r^2 −x^2 ))  cosβ=((2r^2 −y^2 )/(2r^2 )),sinβ=(y/(2r^2 ))(√(4r^2 −y^2 ))  cos(α+β)=(((2r^2 −x^2 )(2r^2 −y^2 ))/(4r^4 ))−((xy)/(4r^4 ))(√((4r^2 −x^2 )(4r^2 −y^2 )))  BD^2 =2r^2 −2r^2 .cos(α+β)=  =((xy.(√((4r^2 −x^2 )(4r^2 −y^2 )))−(2r^2 −x^2 )(2r^2 −y^2 )+4r^4 )/(2r^2 )).  =((xy.(√((4r^2 −x^2 )(4r^2 −y^2 )))+2r^2 (x^2 +y^2 )−x^2 y^2 )/(2r^2 )).  BD=(√(((xy)/(2r^2 )).(√((4r^2 −x^2 )(4r^2 −y^2 )))+(x^2 +y^2 )−(((xy)/(r(√2))))^2 )).

BAC=α,DAC=βcosα=2r2x22r2,sinα=x2r24r2x2cosβ=2r2y22r2,sinβ=y2r24r2y2cos(α+β)=(2r2x2)(2r2y2)4r4xy4r4(4r2x2)(4r2y2)BD2=2r22r2.cos(α+β)==xy.(4r2x2)(4r2y2)(2r2x2)(2r2y2)+4r42r2.=xy.(4r2x2)(4r2y2)+2r2(x2+y2)x2y22r2.BD=xy2r2.(4r2x2)(4r2y2)+(x2+y2)(xyr2)2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com