Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 49460 by Pk1167156@gmail.com last updated on 07/Dec/18

If  x=1+i  is a root of the equation  x^3 −ix+1−i=0 , then the other real  root is

Ifx=1+iisarootoftheequationx3ix+1i=0,thentheotherrealrootis

Commented by Kunal12588 last updated on 07/Dec/18

i do it with normal real way. so it  should be wrong.  x^3 −ix+1−i=(x−1−i)(x+i)(x+1)  roots are  x_1 =1+i,x_2 =−i,x_3 =−1. so real root=−1.  please inform if it is wrong.

idoitwithnormalrealway.soitshouldbewrong.x3ix+1i=(x1i)(x+i)(x+1)rootsarex1=1+i,x2=i,x3=1.sorealroot=1.pleaseinformifitiswrong.

Commented by Abdo msup. last updated on 08/Dec/18

(x−1−i)(x+i)(x+1)=(x−1−i)(x^2 +x+ix +i)  =(x−1−i)(x^2  +(1+i)x +i)  =x^3  +(1+i)x^2 +ix−x^2 −(1+i)x−i−ix^2 −i(1+i)x +1  x^3  −x −ix +x +1−i = x^3 −ix +1−i so your answer is  correct sir .

(x1i)(x+i)(x+1)=(x1i)(x2+x+ix+i)=(x1i)(x2+(1+i)x+i)=x3+(1+i)x2+ixx2(1+i)xiix2i(1+i)x+1x3xix+x+1i=x3ix+1isoyouransweriscorrectsir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com