Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 49605 by Rio Michael last updated on 08/Dec/18

Commented by Rio Michael last updated on 08/Dec/18

The figure above has △ABC and △MBD where AC is parallel  to DM.Find the lenght AM if  a) BM = 6.5m  b) Given the the area of △ABC = 120m^2  find the area  of the Trapezium ACDM.

$${The}\:{figure}\:{above}\:{has}\:\bigtriangleup{ABC}\:{and}\:\bigtriangleup{MBD}\:{where}\:{AC}\:{is}\:{parallel} \\ $$$${to}\:{DM}.{Find}\:{the}\:{lenght}\:{AM}\:{if} \\ $$$$\left.{a}\right)\:{BM}\:=\:\mathrm{6}.\mathrm{5}{m} \\ $$$$\left.{b}\right)\:{Given}\:{the}\:{the}\:{area}\:{of}\:\bigtriangleup{ABC}\:=\:\mathrm{120}{m}^{\mathrm{2}} \:{find}\:{the}\:{area} \\ $$$${of}\:{the}\:{Trapezium}\:{ACDM}. \\ $$

Commented by afachri last updated on 08/Dec/18

what is CD sir ???   can′t see it sir.

$$\mathrm{what}\:\mathrm{is}\:\mathrm{CD}\:\mathrm{sir}\:???\: \\ $$$$\mathrm{can}'\mathrm{t}\:\mathrm{see}\:\mathrm{it}\:\mathrm{sir}. \\ $$

Commented by Rio Michael last updated on 08/Dec/18

CD= 2m

$${CD}=\:\mathrm{2}{m} \\ $$

Answered by Kunal12588 last updated on 08/Dec/18

in △ABC and △MBD  ∠ABC=∠MBD=90°  consider AC∥MD and AB as transversal  so ∠CAB=∠DMB   {corosponding ∠s}  in any two triangle if 2 angles are equal  so their 3^(rd)  were also equal.  so △ABC ∼ △MBD  AAA criteria     (1)  now,  ((AB)/(MB))=((BC)/(BD))  ((AM+MB)/(MB))=((BD+CD)/(BD))  ((AM)/(MB))=((CD)/(BD))  AM=(2/6)×6.5=((13)/6) m  2)from (1)  ((ar(△ABC))/(ar(△MBD)))=((AB^2 )/(MB^2 ))=((BC^2 )/(BD^2 ))=((CA^2 )/(DM^2 ))  ((ar(△MBD))/(ar(△ABC)))=((BD^2 )/(BC^2 ))  invertendo  ((ar(△ABC)−ar(MBD))/(ar(△ABC)))=((BC^2 −BD^ )/(BC^2 )) compendo  ((ar(AMDC))/(ar(△ABC)))=(((6+2)^2 −6^2 )/((6+2)^2 ))  ar(AMDC)=((64−36)/(64))×120=((85)/2)m^2   first can also be solved using thales theorem

$${in}\:\bigtriangleup{ABC}\:{and}\:\bigtriangleup{MBD} \\ $$$$\angle{ABC}=\angle{MBD}=\mathrm{90}° \\ $$$${consider}\:{AC}\parallel{MD}\:{and}\:{AB}\:{as}\:{transversal} \\ $$$${so}\:\angle{CAB}=\angle{DMB}\:\:\:\left\{{corosponding}\:\angle{s}\right\} \\ $$$${in}\:{any}\:{two}\:{triangle}\:{if}\:\mathrm{2}\:{angles}\:{are}\:{equal} \\ $$$${so}\:{their}\:\mathrm{3}^{{rd}} \:{were}\:{also}\:{equal}. \\ $$$${so}\:\bigtriangleup{ABC}\:\sim\:\bigtriangleup{MBD}\:\:{AAA}\:{criteria}\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$${now}, \\ $$$$\frac{{AB}}{{MB}}=\frac{{BC}}{{BD}} \\ $$$$\frac{{AM}+{MB}}{{MB}}=\frac{{BD}+{CD}}{{BD}} \\ $$$$\frac{{AM}}{{MB}}=\frac{{CD}}{{BD}} \\ $$$${AM}=\frac{\mathrm{2}}{\mathrm{6}}×\mathrm{6}.\mathrm{5}=\frac{\mathrm{13}}{\mathrm{6}}\:{m} \\ $$$$\left.\mathrm{2}\right){from}\:\left(\mathrm{1}\right) \\ $$$$\frac{{ar}\left(\bigtriangleup{ABC}\right)}{{ar}\left(\bigtriangleup{MBD}\right)}=\frac{{AB}^{\mathrm{2}} }{{MB}^{\mathrm{2}} }=\frac{{BC}^{\mathrm{2}} }{{BD}^{\mathrm{2}} }=\frac{{CA}^{\mathrm{2}} }{{DM}^{\mathrm{2}} } \\ $$$$\frac{{ar}\left(\bigtriangleup{MBD}\right)}{{ar}\left(\bigtriangleup{ABC}\right)}=\frac{{BD}^{\mathrm{2}} }{{BC}^{\mathrm{2}} }\:\:{invertendo} \\ $$$$\frac{{ar}\left(\bigtriangleup{ABC}\right)−{ar}\left({MBD}\right)}{{ar}\left(\bigtriangleup{ABC}\right)}=\frac{{BC}^{\mathrm{2}} −{BD}^{} }{{BC}^{\mathrm{2}} }\:{compendo} \\ $$$$\frac{{ar}\left({AMDC}\right)}{{ar}\left(\bigtriangleup{ABC}\right)}=\frac{\left(\mathrm{6}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }{\left(\mathrm{6}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$${ar}\left({AMDC}\right)=\frac{\mathrm{64}−\mathrm{36}}{\mathrm{64}}×\mathrm{120}=\frac{\mathrm{85}}{\mathrm{2}}{m}^{\mathrm{2}} \\ $$$${first}\:{can}\:{also}\:{be}\:{solved}\:{using}\:{thales}\:{theorem} \\ $$

Commented by Rio Michael last updated on 08/Dec/18

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com