Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49661 by maxmathsup by imad last updated on 08/Dec/18

calculateA_n =(1/(2i)) ∫_0 ^1 {(1+ix)^n −(1−ix)^n }dx

$${calculateA}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}{i}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\left(\mathrm{1}+{ix}\right)^{{n}} −\left(\mathrm{1}−{ix}\right)^{{n}} \right\}{dx} \\ $$

Commented by maxmathsup by imad last updated on 09/Dec/18

we have  first  (1+ix)^n −(1−ix)^n  =Σ_(k=0) ^n   C_n ^k (ix)^k  −Σ_(k=0) ^n  C_n ^k  (−ix)^k   =Σ_(k=0) ^n   C_n ^k  (i^k −(−i)^k )x^k  =Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)  ( i^(2p+1)  −(−i)^(2p+1) )x^(2p+1)   =2i Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)  (−1)^p  x^(2p+1)  ⇒  A_n =Σ_(p=0) ^([((n−1)/2)]) (−1)^p  C_n ^(2p+1)   ∫_0 ^1  x^(2p+1)  dx =Σ_(p=0) ^([((n−1)/2)])  (−1)^p   (C_n ^(2p+1) /(2p+2)) .

$${we}\:{have}\:\:{first}\:\:\left(\mathrm{1}+{ix}\right)^{{n}} −\left(\mathrm{1}−{ix}\right)^{{n}} \:=\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \left({ix}\right)^{{k}} \:−\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(−{ix}\right)^{{k}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\left({i}^{{k}} −\left(−{i}\right)^{{k}} \right){x}^{{k}} \:=\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \:\left(\:{i}^{\mathrm{2}{p}+\mathrm{1}} \:−\left(−{i}\right)^{\mathrm{2}{p}+\mathrm{1}} \right){x}^{\mathrm{2}{p}+\mathrm{1}} \\ $$$$=\mathrm{2}{i}\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \:\left(−\mathrm{1}\right)^{{p}} \:{x}^{\mathrm{2}{p}+\mathrm{1}} \:\Rightarrow \\ $$$${A}_{{n}} =\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{p}+\mathrm{1}} \:{dx}\:=\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\left(−\mathrm{1}\right)^{{p}} \:\:\frac{{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} }{\mathrm{2}{p}+\mathrm{2}}\:. \\ $$

Commented by maxmathsup by imad last updated on 09/Dec/18

another method   we have A_n =(1/(2i))[(1/(i(n+1)))(1+ix)^(n+1)  +(1/(i(n+1)))(1−ix)^(n+1) ]_0 ^1   =((−1)/(2(n+1))){ (1+i)^(n+1)  +(1−i)^(n+1)  −2}  =((−1)/(2(n+1))){ 2Re((1+i)^(n+1) )−2}  but 1+i =(√2)e^(i(π/4))  ⇒(1+i)^(n+1)  =2^((n+1)/2)  e^(i(n+1)(π/4))  ⇒  A_n =−(1/(n+1)){ 2^((n+1)/2)  cos(n+1)(π/4) −1}  =(1/(n+1)){ 1−2^((n+1)/2)  cos((n+1)(π/4))} .

$${another}\:{method}\: \\ $$$${we}\:{have}\:{A}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}{i}}\left[\frac{\mathrm{1}}{{i}\left({n}+\mathrm{1}\right)}\left(\mathrm{1}+{ix}\right)^{{n}+\mathrm{1}} \:+\frac{\mathrm{1}}{{i}\left({n}+\mathrm{1}\right)}\left(\mathrm{1}−{ix}\right)^{{n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left\{\:\left(\mathrm{1}+{i}\right)^{{n}+\mathrm{1}} \:+\left(\mathrm{1}−{i}\right)^{{n}+\mathrm{1}} \:−\mathrm{2}\right\} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left\{\:\mathrm{2}{Re}\left(\left(\mathrm{1}+{i}\right)^{{n}+\mathrm{1}} \right)−\mathrm{2}\right\}\:\:{but}\:\mathrm{1}+{i}\:=\sqrt{\mathrm{2}}{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\Rightarrow\left(\mathrm{1}+{i}\right)^{{n}+\mathrm{1}} \:=\mathrm{2}^{\frac{{n}+\mathrm{1}}{\mathrm{2}}} \:{e}^{{i}\left({n}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}} \:\Rightarrow \\ $$$${A}_{{n}} =−\frac{\mathrm{1}}{{n}+\mathrm{1}}\left\{\:\mathrm{2}^{\frac{{n}+\mathrm{1}}{\mathrm{2}}} \:{cos}\left({n}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}\:−\mathrm{1}\right\} \\ $$$$=\frac{\mathrm{1}}{{n}+\mathrm{1}}\left\{\:\mathrm{1}−\mathrm{2}^{\frac{{n}+\mathrm{1}}{\mathrm{2}}} \:{cos}\left(\left({n}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}\right)\right\}\:. \\ $$

Answered by Smail last updated on 09/Dec/18

A_n =(1/(2i))[(1/(i(n+1)))(1+ix)^(n+1) −(1/(−i(n+1)))(1−ix)^(n+1) ]_0 ^1   =−(1/2)((((1+i)^(n+1) )/(n+1))+(((1−i)^(n+1) )/(n+1))−(1/(n+1))−(1/(n+1)))  =−(1/(2(n+1)))(((√2))^(n+1) (e^(i(π/4)) )^(n+1) +((√2))^(n+1) (e^(−i(π/4)) )^(n+1) −2)  =−(1/(2(n+1)))[((√2))^(n+1) (e^(i((π(n+1))/4)) +e^(−i((π(n+1))/4)) )−2)  =−(1/((n+1)))(((√2))^(n+1) cos(((π(n+1))/4))−2)

$${A}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}{i}}\left[\frac{\mathrm{1}}{{i}\left({n}+\mathrm{1}\right)}\left(\mathrm{1}+{ix}\right)^{{n}+\mathrm{1}} −\frac{\mathrm{1}}{−{i}\left({n}+\mathrm{1}\right)}\left(\mathrm{1}−{ix}\right)^{{n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}+\frac{\left(\mathrm{1}−{i}\right)^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left(\left(\sqrt{\mathrm{2}}\right)^{{n}+\mathrm{1}} \left({e}^{{i}\frac{\pi}{\mathrm{4}}} \right)^{{n}+\mathrm{1}} +\left(\sqrt{\mathrm{2}}\right)^{{n}+\mathrm{1}} \left({e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)^{{n}+\mathrm{1}} −\mathrm{2}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left[\left(\sqrt{\mathrm{2}}\right)^{{n}+\mathrm{1}} \left({e}^{{i}\frac{\pi\left({n}+\mathrm{1}\right)}{\mathrm{4}}} +{e}^{−{i}\frac{\pi\left({n}+\mathrm{1}\right)}{\mathrm{4}}} \right)−\mathrm{2}\right) \\ $$$$=−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)}\left(\left(\sqrt{\mathrm{2}}\right)^{{n}+\mathrm{1}} {cos}\left(\frac{\pi\left({n}+\mathrm{1}\right)}{\mathrm{4}}\right)−\mathrm{2}\right) \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 09/Dec/18

where are you from sir smail?

$${where}\:{are}\:{you}\:{from}\:{sir}\:{smail}? \\ $$

Commented by Smail last updated on 09/Dec/18

I am from Morocco, but I live in the USA.

$${I}\:{am}\:{from}\:{Morocco},\:{but}\:{I}\:{live}\:{in}\:{the}\:{USA}. \\ $$

Commented by Smail last updated on 09/Dec/18

How about you?

$${How}\:{about}\:{you}? \\ $$

Commented by maxmathsup by imad last updated on 09/Dec/18

 i am also morrocan theacher for the high atlas  but i work now in casablanca.

$$\:{i}\:{am}\:{also}\:{morrocan}\:{theacher}\:{for}\:{the}\:{high}\:{atlas}\:\:{but}\:{i}\:{work}\:{now}\:{in}\:{casablanca}. \\ $$

Commented by Smail last updated on 09/Dec/18

Waw, what a coincidence.

$${Waw},\:{what}\:{a}\:{coincidence}. \\ $$

Commented by Smail last updated on 09/Dec/18

Which part of High Atlas are you from?

$${Which}\:{part}\:{of}\:{High}\:{Atlas}\:{are}\:{you}\:{from}? \\ $$

Commented by maxmathsup by imad last updated on 09/Dec/18

and what do you work in usa sir smail?

$${and}\:{what}\:{do}\:{you}\:{work}\:{in}\:{usa}\:{sir}\:{smail}? \\ $$

Commented by maxmathsup by imad last updated on 09/Dec/18

 a am from Azilal city.

$$\:{a}\:{am}\:{from}\:{Azilal}\:{city}. \\ $$

Commented by Smail last updated on 09/Dec/18

Ana men Demnate

$${Ana}\:{men}\:{Demnate} \\ $$

Commented by maxmathsup by imad last updated on 09/Dec/18

really a coincidence  we are from the same region .

$${really}\:{a}\:{coincidence}\:\:{we}\:{are}\:{from}\:{the}\:{same}\:{region}\:. \\ $$

Commented by Smail last updated on 09/Dec/18

yup

$${yup} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com