Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 49678 by Rio Michael last updated on 09/Dec/18

Commented by Rio Michael last updated on 09/Dec/18

A closed Cylinder can is made from a fix amount A of thin  metal sheet.Find the relation between its radius and height,  if it is to contain the maximum possible volume  (Note: Wastage of material ignored).

$${A}\:{closed}\:{Cylinder}\:{can}\:{is}\:{made}\:{from}\:{a}\:{fix}\:{amount}\:{A}\:{of}\:{thin} \\ $$$${metal}\:{sheet}.{Find}\:{the}\:{relation}\:{between}\:{its}\:{radius}\:{and}\:{height}, \\ $$$${if}\:{it}\:{is}\:{to}\:{contain}\:{the}\:{maximum}\:{possible}\:{volume} \\ $$$$\left({Note}:\:{Wastage}\:{of}\:{material}\:{ignored}\right). \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Dec/18

v=πr^2 h  s=2πrh+2πr^2     h=((s−2πr^2 )/(2πr))  v=πr^2 ×(((s−2πr^2 )/(2πr)))  v=(r/2)(s−2πr^2 )=((rs)/2)−πr^3   (dv/dr)=(s/2)−3πr^2   for max/min (dv/dr)=0  3πr^2 =(s/2)     r^2 =(s/(6π))   r=(√(s/(6π)))   (d^2 v/dr^2 )=−6πr=−6π×(√(s/(6π))) =−(√(6πs))   (d^2 v/dr^2 )<0   at  r=(√(s/(6π)))   so max volume when r=(√(s/(6π)))   h=((s−2πr^2 )/(2πr))=((s/(2πr))−r)   h=((s/(2π(√(s/(6π)))))−(√(s/(6π))) )  h=((1/2)×((√s)/(√π))×(√6) −(√(s/(6π))) )

$${v}=\pi{r}^{\mathrm{2}} {h} \\ $$$${s}=\mathrm{2}\pi{rh}+\mathrm{2}\pi{r}^{\mathrm{2}} \:\: \\ $$$${h}=\frac{{s}−\mathrm{2}\pi{r}^{\mathrm{2}} }{\mathrm{2}\pi{r}} \\ $$$${v}=\pi{r}^{\mathrm{2}} ×\left(\frac{{s}−\mathrm{2}\pi{r}^{\mathrm{2}} }{\mathrm{2}\pi{r}}\right) \\ $$$${v}=\frac{{r}}{\mathrm{2}}\left({s}−\mathrm{2}\pi{r}^{\mathrm{2}} \right)=\frac{{rs}}{\mathrm{2}}−\pi{r}^{\mathrm{3}} \\ $$$$\frac{{dv}}{{dr}}=\frac{{s}}{\mathrm{2}}−\mathrm{3}\pi{r}^{\mathrm{2}} \\ $$$${for}\:{max}/{min}\:\frac{{dv}}{{dr}}=\mathrm{0} \\ $$$$\mathrm{3}\pi{r}^{\mathrm{2}} =\frac{{s}}{\mathrm{2}}\:\:\:\:\:{r}^{\mathrm{2}} =\frac{{s}}{\mathrm{6}\pi}\:\:\:{r}=\sqrt{\frac{{s}}{\mathrm{6}\pi}}\: \\ $$$$\frac{{d}^{\mathrm{2}} {v}}{{dr}^{\mathrm{2}} }=−\mathrm{6}\pi{r}=−\mathrm{6}\pi×\sqrt{\frac{{s}}{\mathrm{6}\pi}}\:=−\sqrt{\mathrm{6}\pi{s}}\: \\ $$$$\frac{{d}^{\mathrm{2}} {v}}{{dr}^{\mathrm{2}} }<\mathrm{0}\:\:\:{at}\:\:{r}=\sqrt{\frac{{s}}{\mathrm{6}\pi}}\: \\ $$$${so}\:{max}\:{volume}\:{when}\:{r}=\sqrt{\frac{{s}}{\mathrm{6}\pi}}\: \\ $$$${h}=\frac{{s}−\mathrm{2}\pi{r}^{\mathrm{2}} }{\mathrm{2}\pi{r}}=\left(\frac{{s}}{\mathrm{2}\pi{r}}−{r}\right)\: \\ $$$${h}=\left(\frac{{s}}{\mathrm{2}\pi\sqrt{\frac{{s}}{\mathrm{6}\pi}}}−\sqrt{\frac{{s}}{\mathrm{6}\pi}}\:\right) \\ $$$${h}=\left(\frac{\mathrm{1}}{\mathrm{2}}×\frac{\sqrt{{s}}}{\sqrt{\pi}}×\sqrt{\mathrm{6}}\:−\sqrt{\frac{{s}}{\mathrm{6}\pi}}\:\right) \\ $$$$ \\ $$

Commented by Rio Michael last updated on 09/Dec/18

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Dec/18

most welcome...

$${most}\:{welcome}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com