Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 49696 by ajfour last updated on 09/Dec/18

Commented by ajfour last updated on 09/Dec/18

Find parameters of ellipse within  the box and touching all its six  faces at A, B, C, D, E, and F  and  (may be for uniqueness) of  maximum area.

$${Find}\:{parameters}\:{of}\:{ellipse}\:{within} \\ $$$${the}\:{box}\:{and}\:{touching}\:{all}\:{its}\:{six} \\ $$$${faces}\:{at}\:{A},\:{B},\:{C},\:{D},\:{E},\:{and}\:{F}\:\:{and} \\ $$$$\left({may}\:{be}\:{for}\:{uniqueness}\right)\:{of} \\ $$$${maximum}\:{area}. \\ $$

Answered by mr W last updated on 09/Dec/18

Commented by mr W last updated on 09/Dec/18

projection of the ellipse in xy−plane  is also an ellipse, let′s say with  parameters p and b:  (x^2 /p^2 )+(y^2 /b^2 )=1  eqn. of tangent line:  x+y−(l/(√2))=0  ⇒p^2 +b^2 =((l/(√2)))^2 =(l^2 /2)  ⇒b^2 =(l^2 /2)−p^2   (2a)^2 =(2p)^2 +h^2   ⇒a^2 =p^2 +(h^2 /4)  let T=a^2 b^2 =(p^2 +(h^2 /4))((l^2 /2)−p^2 )  such that the ellipse has maximum  area, (dT/dp)=0  (dT/dp)=(p^2 +(h^2 /4))(−2p)+2p((l^2 /2)−p^2 )=0  ⇒p^2 =(1/8)(2l^2 −h^2 )  ⇒a^2 =(1/8)(2l^2 −h^2 )+(h^2 /4)=(1/8)(2l^2 +h^2 )  ⇒a=(1/2)(√(l^2 +(h^2 /2)))  ⇒b^2 =(l^2 /2)−(1/8)(2l^2 −h^2 )=(1/8)(2l^2 +h^2 )  ⇒b=(1/2)(√(l^2 +(h^2 /2)))=a  i.e. the ellipse with maximum area is  a circle with R=a=b=(1/2)(√(l^2 +(h^2 /2)))  max.A=πR^2 =((π(2l^2 +h^2 ))/8)

$${projection}\:{of}\:{the}\:{ellipse}\:{in}\:{xy}−{plane} \\ $$$${is}\:{also}\:{an}\:{ellipse},\:{let}'{s}\:{say}\:{with} \\ $$$${parameters}\:{p}\:{and}\:{b}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{p}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${eqn}.\:{of}\:{tangent}\:{line}: \\ $$$${x}+{y}−\frac{{l}}{\sqrt{\mathrm{2}}}=\mathrm{0} \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{b}^{\mathrm{2}} =\left(\frac{{l}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} =\frac{{l}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\frac{{l}^{\mathrm{2}} }{\mathrm{2}}−{p}^{\mathrm{2}} \\ $$$$\left(\mathrm{2}{a}\right)^{\mathrm{2}} =\left(\mathrm{2}{p}\right)^{\mathrm{2}} +{h}^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} ={p}^{\mathrm{2}} +\frac{{h}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${let}\:{T}={a}^{\mathrm{2}} {b}^{\mathrm{2}} =\left({p}^{\mathrm{2}} +\frac{{h}^{\mathrm{2}} }{\mathrm{4}}\right)\left(\frac{{l}^{\mathrm{2}} }{\mathrm{2}}−{p}^{\mathrm{2}} \right) \\ $$$${such}\:{that}\:{the}\:{ellipse}\:{has}\:{maximum} \\ $$$${area},\:\frac{{dT}}{{dp}}=\mathrm{0} \\ $$$$\frac{{dT}}{{dp}}=\left({p}^{\mathrm{2}} +\frac{{h}^{\mathrm{2}} }{\mathrm{4}}\right)\left(−\mathrm{2}{p}\right)+\mathrm{2}{p}\left(\frac{{l}^{\mathrm{2}} }{\mathrm{2}}−{p}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{p}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{2}{l}^{\mathrm{2}} −{h}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{2}{l}^{\mathrm{2}} −{h}^{\mathrm{2}} \right)+\frac{{h}^{\mathrm{2}} }{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{2}{l}^{\mathrm{2}} +{h}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{l}^{\mathrm{2}} +\frac{{h}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\frac{{l}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{2}{l}^{\mathrm{2}} −{h}^{\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{2}{l}^{\mathrm{2}} +{h}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{b}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{l}^{\mathrm{2}} +\frac{{h}^{\mathrm{2}} }{\mathrm{2}}}={a} \\ $$$${i}.{e}.\:{the}\:{ellipse}\:{with}\:{maximum}\:{area}\:{is} \\ $$$${a}\:{circle}\:{with}\:{R}={a}={b}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{l}^{\mathrm{2}} +\frac{{h}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$${max}.{A}=\pi{R}^{\mathrm{2}} =\frac{\pi\left(\mathrm{2}{l}^{\mathrm{2}} +{h}^{\mathrm{2}} \right)}{\mathrm{8}} \\ $$

Commented by ajfour last updated on 09/Dec/18

GREAT SiR!  Thanks a lot.

$$\mathbb{GREAT}\:\mathcal{S}{i}\mathcal{R}!\:\:{Thanks}\:{a}\:{lot}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com