Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49827 by rahul 19 last updated on 11/Dec/18

The integral ∫_0 ^(1/2) ((ln (1+2x))/(1+4x^2 ))dx = ?  a) (π/4)ln2    b)(π/8)ln2    c)(π/(16))ln2   d)(π/(32))ln2

Theintegral012ln(1+2x)1+4x2dx=?a)π4ln2b)π8ln2c)π16ln2d)π32ln2

Commented by rahul 19 last updated on 11/Dec/18

thank you sir!

thankyousir!

Commented by rahul 19 last updated on 11/Dec/18

Any short/tricky method other  than usual substitution:2x=tanθ ???

Anyshort/trickymethodotherthanusualsubstitution:2x=tanθ???

Commented by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18

remember the answer...

remembertheanswer...

Commented by Abdo msup. last updated on 11/Dec/18

let I =∫_0 ^(1/2)  ((ln(1+2x))/(1+4x^2 ))dx changement 2x =tant give  I = (1/2)∫_0 ^(π/4)   ((ln(1+tant))/(1+tan^2 t)) (1+tan^2 t)dt ⇒  2I = ∫_0 ^(π/4)  ln(1+tant )dt =∫_0 ^(π/4) ln(((cost +sint)/(cost)))dt  =∫_0 ^(π/4)  ln(cost +sint)dt−∫_0 ^(π/4) ln(cost)dt  =∫_0 ^(π/4) ln((√2)sin(t+(π/4))dt −∫_0 ^(π/4) ln(cost)dt  =(π/8)ln(2) +∫_0 ^(π/4) ln(sin(t+(π/4)))dt −∫_0 ^(π/4) ln(cost)dt  ∫_0 ^(π/4) ln(sin(t+(π/4)))dt =_(t+(π/4)=u)   ∫_(π/4) ^(π/2) ln(sinu)du  =_(u =(π/2)−α)     ∫_(π/4) ^0 ln(cosα)(−dα)=∫_0 ^(π/4)  ln(cosα)dα  2I =(π/8)ln(2) ⇒ I =(π/(16))ln(2) .

letI=012ln(1+2x)1+4x2dxchangement2x=tantgiveI=120π4ln(1+tant)1+tan2t(1+tan2t)dt2I=0π4ln(1+tant)dt=0π4ln(cost+sintcost)dt=0π4ln(cost+sint)dt0π4ln(cost)dt=0π4ln(2sin(t+π4)dt0π4ln(cost)dt=π8ln(2)+0π4ln(sin(t+π4))dt0π4ln(cost)dt0π4ln(sin(t+π4))dt=t+π4=uπ4π2ln(sinu)du=u=π2απ40ln(cosα)(dα)=0π4ln(cosα)dα2I=π8ln(2)I=π16ln(2).

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18

t=2x  dt=2dx  ∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt  I=∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt  t=tana  dt=sec^2 ada  I=∫_0 ^(π/4) ((ln(1+tana))/(sec^2 a))×sec^2 ada  =∫_0 ^(π/4) ln{1+tan((π/4)−a)}  =∫_0 ^(π/4) ln{1+((1−tana)/(1+tana))}da  =∫_0 ^(π/4) ln((2/(1+tana)))da  =∫_0 ^(π/4) ln2 da−∫_0 ^(π/4) ln(1+tana)da  2I=ln2∫_0 ^(π/4) da  I=(1/2)×(ln2)×(π/4)=(π/8)ln2

t=2xdt=2dx01ln(1+t)1+t2dtI=01ln(1+t)1+t2dtt=tanadt=sec2adaI=0π4ln(1+tana)sec2a×sec2ada=0π4ln{1+tan(π4a)}=0π4ln{1+1tana1+tana}da=0π4ln(21+tana)da=0π4ln2da0π4ln(1+tana)da2I=ln20π4daI=12×(ln2)×π4=π8ln2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com