Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49827 by rahul 19 last updated on 11/Dec/18

The integral ∫_0 ^(1/2) ((ln (1+2x))/(1+4x^2 ))dx = ?  a) (π/4)ln2    b)(π/8)ln2    c)(π/(16))ln2   d)(π/(32))ln2

$${The}\:{integral}\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}\:\left(\mathrm{1}+\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}\:=\:? \\ $$$$\left.{a}\left.\right)\left.\:\left.\frac{\pi}{\mathrm{4}}{ln}\mathrm{2}\:\:\:\:{b}\right)\frac{\pi}{\mathrm{8}}{ln}\mathrm{2}\:\:\:\:{c}\right)\frac{\pi}{\mathrm{16}}{ln}\mathrm{2}\:\:\:{d}\right)\frac{\pi}{\mathrm{32}}{ln}\mathrm{2} \\ $$

Commented by rahul 19 last updated on 11/Dec/18

thank you sir!

$${thank}\:{you}\:{sir}! \\ $$

Commented by rahul 19 last updated on 11/Dec/18

Any short/tricky method other  than usual substitution:2x=tanθ ???

$${Any}\:{short}/{tricky}\:{method}\:{other} \\ $$$${than}\:{usual}\:{substitution}:\mathrm{2}{x}=\mathrm{tan}\theta\:??? \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18

remember the answer...

$${remember}\:{the}\:{answer}... \\ $$

Commented by Abdo msup. last updated on 11/Dec/18

let I =∫_0 ^(1/2)  ((ln(1+2x))/(1+4x^2 ))dx changement 2x =tant give  I = (1/2)∫_0 ^(π/4)   ((ln(1+tant))/(1+tan^2 t)) (1+tan^2 t)dt ⇒  2I = ∫_0 ^(π/4)  ln(1+tant )dt =∫_0 ^(π/4) ln(((cost +sint)/(cost)))dt  =∫_0 ^(π/4)  ln(cost +sint)dt−∫_0 ^(π/4) ln(cost)dt  =∫_0 ^(π/4) ln((√2)sin(t+(π/4))dt −∫_0 ^(π/4) ln(cost)dt  =(π/8)ln(2) +∫_0 ^(π/4) ln(sin(t+(π/4)))dt −∫_0 ^(π/4) ln(cost)dt  ∫_0 ^(π/4) ln(sin(t+(π/4)))dt =_(t+(π/4)=u)   ∫_(π/4) ^(π/2) ln(sinu)du  =_(u =(π/2)−α)     ∫_(π/4) ^0 ln(cosα)(−dα)=∫_0 ^(π/4)  ln(cosα)dα  2I =(π/8)ln(2) ⇒ I =(π/(16))ln(2) .

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}\:{changement}\:\mathrm{2}{x}\:={tant}\:{give} \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{ln}\left(\mathrm{1}+{tant}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} {t}}\:\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right){dt}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left(\mathrm{1}+{tant}\:\right){dt}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{{cost}\:+{sint}}{{cost}}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({cost}\:+{sint}\right){dt}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cost}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\sqrt{\mathrm{2}}{sin}\left({t}+\frac{\pi}{\mathrm{4}}\right){dt}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cost}\right){dt}\right. \\ $$$$=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left({t}+\frac{\pi}{\mathrm{4}}\right)\right){dt}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cost}\right){dt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left({t}+\frac{\pi}{\mathrm{4}}\right)\right){dt}\:=_{{t}+\frac{\pi}{\mathrm{4}}={u}} \:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinu}\right){du} \\ $$$$=_{{u}\:=\frac{\pi}{\mathrm{2}}−\alpha} \:\:\:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} {ln}\left({cos}\alpha\right)\left(−{d}\alpha\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({cos}\alpha\right){d}\alpha \\ $$$$\mathrm{2}{I}\:=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\:\Rightarrow\:{I}\:=\frac{\pi}{\mathrm{16}}{ln}\left(\mathrm{2}\right)\:. \\ $$$$ \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18

t=2x  dt=2dx  ∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt  I=∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt  t=tana  dt=sec^2 ada  I=∫_0 ^(π/4) ((ln(1+tana))/(sec^2 a))×sec^2 ada  =∫_0 ^(π/4) ln{1+tan((π/4)−a)}  =∫_0 ^(π/4) ln{1+((1−tana)/(1+tana))}da  =∫_0 ^(π/4) ln((2/(1+tana)))da  =∫_0 ^(π/4) ln2 da−∫_0 ^(π/4) ln(1+tana)da  2I=ln2∫_0 ^(π/4) da  I=(1/2)×(ln2)×(π/4)=(π/8)ln2

$${t}=\mathrm{2}{x}\:\:{dt}=\mathrm{2}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${t}={tana}\:\:{dt}={sec}^{\mathrm{2}} {ada} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{ln}\left(\mathrm{1}+{tana}\right)}{{sec}^{\mathrm{2}} {a}}×{sec}^{\mathrm{2}} {ada} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left\{\mathrm{1}+{tan}\left(\frac{\pi}{\mathrm{4}}−{a}\right)\right\} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left\{\mathrm{1}+\frac{\mathrm{1}−{tana}}{\mathrm{1}+{tana}}\right\}{da} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{\mathrm{2}}{\mathrm{1}+{tana}}\right){da} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\mathrm{2}\:{da}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tana}\right){da} \\ $$$$\mathrm{2}{I}={ln}\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {da} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}×\left({ln}\mathrm{2}\right)×\frac{\pi}{\mathrm{4}}=\frac{\pi}{\mathrm{8}}{ln}\mathrm{2} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com