Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49829 by mhozhez last updated on 11/Dec/18

∫(x^2 /(x^4 +1))dx

x2x4+1dx

Commented by maxmathsup by imad last updated on 11/Dec/18

let I = ∫  (x^2 /(x^4  +1))dx vhangement  x =(1/t)  give  I = ∫    (1/(t^2 ( (1/t^4 ) +1))) −(dt/t^2 ) = −∫   (dt/(t^4 (1+(1/t^4 )))) = ∫   (dt/(t^4  +1)) let decompose  F(t) =(1/(1+t^4 )) ⇒F(t) = (1/((t^2  +1)^2 −2t^2 )) =(1/((t^2  +(√2)t +1)(t^2 −(√2)t +1)))  =((at +b)/(t^2  +(√2)t +1)) + ((ct +d)/(t^2  −(√2) t +1)) we have F(−t)=F(t) ⇒  ((−at +b)/(t^2 −(√2)t +1)) +((−ct +d)/(t^2  +(√2)t +1)) =F(t) ⇒c =−a and b=d ⇒  F(t) = ((at +b)/(t^2  +(√2)t +1)) +((−at +b)/(t^2 −(√2)t +1))  F(0) =1 = 2b ⇒b=(1/2)  F(1) =(1/2)= ((a+b)/(2+(√2)))  +((−a+b)/(2−(√2)))  ⇒(((2−(√2))(a+b)+(2+(√2))(−a+b))/2) =(1/2) ⇒  (2−(√2)−2−(√2))a +(2−(√2) +2+(√2))b =1 ⇒  −2(√2)a  +4 .(1/2) =1 ⇒−2(√2)a =−1 ⇒a =(1/(2(√2))) ⇒  F(x) =(((1/(2(√2)))t +(1/2))/(t^2  +(√2)t +1)) +((−(1/(2(√2)))t +(1/2))/(t^2  −(√2)t +1)) ⇒  ∫ F(x)dx = (1/(2(√2))) ∫     ((t +(√2))/(t^2  +(√2)t +1))dt −(1/(2(√2))) ∫  ((t −(√2))/(t^2 −(√2)t +1)) dt  =H −K  2(√2)H =  (1/2) ∫  ((2t +(√2) +(√2))/(t^2  +(√2)t +1)) dt =(1/2)ln(t^2 +(√2)t +1) +((√2)/2) ∫   (dt/(t^2  +(√2)t +1))  ∫    (dt/(t^2  +(√2)t +1)) = ∫     (dt/(t^2  +2 ((√2)/2)t  +(1/2) +1−(1/2))) =∫  (dt/((t +((√2)/2))^2  +(1/2)))  =_(t+((√2)/2)=(1/(√2)) u)   2∫       (1/(1+u^2 )) (du/(√2)) =(√2)arctan(((t(√2)+1)/(√2))) +c ⇒  2(√2)H = (1/2)ln(t^2  +(√2)t +1) +arctan(((t(√2) +1)/(√2)))+c   but t =(1/x)  ⇒  H =(1/(4(√2)))ln((1/x^2 ) +((√2)/x) +1) +(1/(2(√2))) arctan((1/x) +(1/(√2)) ) +c we follow the same  manner for calculus of K .

letI=x2x4+1dxvhangementx=1tgiveI=1t2(1t4+1)dtt2=dtt4(1+1t4)=dtt4+1letdecomposeF(t)=11+t4F(t)=1(t2+1)22t2=1(t2+2t+1)(t22t+1)=at+bt2+2t+1+ct+dt22t+1wehaveF(t)=F(t)at+bt22t+1+ct+dt2+2t+1=F(t)c=aandb=dF(t)=at+bt2+2t+1+at+bt22t+1F(0)=1=2bb=12F(1)=12=a+b2+2+a+b22(22)(a+b)+(2+2)(a+b)2=12(2222)a+(22+2+2)b=122a+4.12=122a=1a=122F(x)=122t+12t2+2t+1+122t+12t22t+1F(x)dx=122t+2t2+2t+1dt122t2t22t+1dt=HK22H=122t+2+2t2+2t+1dt=12ln(t2+2t+1)+22dtt2+2t+1dtt2+2t+1=dtt2+222t+12+112=dt(t+22)2+12=t+22=12u211+u2du2=2arctan(t2+12)+c22H=12ln(t2+2t+1)+arctan(t2+12)+cbutt=1xH=142ln(1x2+2x+1)+122arctan(1x+12)+cwefollowthesamemannerforcalculusofK.

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18

∫(dx/(x^2 +(1/x^2 )))  =(1/2)∫((1−(1/x^2 )+1+(1/x^2 ))/((x^2 +(1/x^2 ))))dx  =(1/2)∫((d(x+(1/x)))/((x+(1/x))^2 −2))+(1/2)∫((d(x−(1/x)))/((x−(1/x))^2 +2))  =(1/2)×(1/(2(√2) ))ln{(((x+(1/x))−(√2))/((x+(1/x))+(√2)))}+(1/2)×(1/(√2))tan^(−1) (((x−(1/x))/(√2)))+c  pls check...

dxx2+1x2=1211x2+1+1x2(x2+1x2)dx=12d(x+1x)(x+1x)22+12d(x1x)(x1x)2+2=12×122ln{(x+1x)2(x+1x)+2}+12×12tan1(x1x2)+cplscheck...

Commented by mhozhez last updated on 11/Dec/18

thanks sir

thankssir

Commented by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18

most welcome...

mostwelcome...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com