Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 49830 by ajfour last updated on 11/Dec/18

Commented by ajfour last updated on 11/Dec/18

Find circumradius r in terms of a.

Findcircumradiusrintermsofa.

Answered by mr W last updated on 11/Dec/18

r=(1/4)(√(((ab+cd)(ac+bd)(ad+bc))/((s−a)(s−b)(s−c)(s−d))))  s=(1/2)(a+b+c+d)=(1/2)(a+2a+3a+4a)=5a  r=(1/4)(√(((2a^2 +12a^2 )(3a^2 +8a^2 )(4a^2 +6a^2 ))/((4a)(3a)(2a)(a))))  r=(a/4)(√((14×11×10)/(4×3×2×1)))  r=(((√(2310)) a)/(24))≈2.0026 a

r=14(ab+cd)(ac+bd)(ad+bc)(sa)(sb)(sc)(sd)s=12(a+b+c+d)=12(a+2a+3a+4a)=5ar=14(2a2+12a2)(3a2+8a2)(4a2+6a2)(4a)(3a)(2a)(a)r=a414×11×104×3×2×1r=2310a242.0026a

Commented by mr W last updated on 11/Dec/18

Commented by ajfour last updated on 11/Dec/18

Thank you Sir! (dint know of the  formula).

ThankyouSir!(dintknowoftheformula).

Answered by behi83417@gmail.com last updated on 11/Dec/18

let:(a^2 /(2r^2 ))=λ  cos^(−1) ((2r^2 −a^2 )/(2r^2 ))+cos^(−1) ((2r^2 −4a^2 )/(2r^2 ))+cos^(−1) ((2r^2 −9a^2 )/(2r^2 ))+  cos^(−1) ((2r^2 −16a^2 )/(2r^2 ))=2π  cos^(−1) (1−λ)+cos^(−1) (1−4λ)+cos^(−1) (1−9λ)+  +cos^(−1) (1−16λ)=2π⇒  a+b+c+d=2π⇒cos(a+c)=cos(b+d)  cos^(−1) (1−λ)+cos^(−1) (1−9λ)=2π−[cos^(−1) (1−2λ)+cos^(−1) (1−16λ)]  cos(a+c)=(1−λ).(1−9λ)−[(1−(1−λ)^2 ][[1−(1−9λ)^2 ]=  =1−10λ−27λ^2 +180λ^3 −81λ^4   cos(b+d)=(1−4λ)(1−16λ)−[(1−(1−4λ)^2 ][(1−(1−16λ)^2 ]=  =1−20λ−192λ^2 +2560λ^3 −4096λ^4   1−10λ−27λ^2 +180λ^3 −81λ^4 =  1−20λ−192λ^2 +2560λ^3 −4096λ^4   ⇒4015λ^3 −2380λ^2 +165λ+10=0  ⇒λ=(a^2 /(2r^2 ))=0.5008,0.1302⇒   ⇒(a/r)=1.007,0.5103

let:a22r2=λcos12r2a22r2+cos12r24a22r2+cos12r29a22r2+cos12r216a22r2=2πcos1(1λ)+cos1(14λ)+cos1(19λ)++cos1(116λ)=2πa+b+c+d=2πcos(a+c)=cos(b+d)cos1(1λ)+cos1(19λ)=2π[cos1(12λ)+cos1(116λ)]cos(a+c)=(1λ).(19λ)[(1(1λ)2][[1(19λ)2]==110λ27λ2+180λ381λ4cos(b+d)=(14λ)(116λ)[(1(14λ)2][(1(116λ)2]==120λ192λ2+2560λ34096λ4110λ27λ2+180λ381λ4=120λ192λ2+2560λ34096λ44015λ32380λ2+165λ+10=0λ=a22r2=0.5008,0.1302ar=1.007,0.5103

Answered by mr W last updated on 11/Dec/18

an other way without using formula:  let α=∠A  ⇒∠C=π−α  let BD=l  l^2 =a^2 +(4a)^2 −2(a)(4a)cos α  ⇒l^2 =17a^2 −8a^2  cos α  l^2 =(2a)^2 +(3a)^2 −2(2a)(3a)cos (π−α)  ⇒l^2 =13a^2 +12a^2  cos α  ⇒13a^2 +12a^2  cos α=17a^2 −8a^2  cos α  ⇒cos α=(1/5)  ⇒l^2 =17a^2 −8a^2 ×(1/5)=((77)/5)a^2   ⇒l=((√(385))/5) a  r is circumradius of ΔABD with sides  a, 4a, ((√(385))/5)a.  r=((a×4a×((√(385))/5)a)/(√((a+4a+((√(385))/5)a)(−a+4a+((√(385))/5)a)(a−4a+((√(385))/5)a)(a+4a−((√(385))/5)a))))  r=((4×((√(385))/5)a)/(√((((385)/(25))−9)(25−((385)/(25))))))=((20(√(385))a)/(√(160×240)))  r=(((√(385))a)/(4(√6)))=(((√(2310)) a)/(24))≈2.0026 a

anotherwaywithoutusingformula:letα=AC=παletBD=ll2=a2+(4a)22(a)(4a)cosαl2=17a28a2cosαl2=(2a)2+(3a)22(2a)(3a)cos(πα)l2=13a2+12a2cosα13a2+12a2cosα=17a28a2cosαcosα=15l2=17a28a2×15=775a2l=3855ariscircumradiusofΔABDwithsidesa,4a,3855a.r=a×4a×3855a(a+4a+3855a)(a+4a+3855a)(a4a+3855a)(a+4a3855a)r=4×3855a(385259)(2538525)=20385a160×240r=385a46=2310a242.0026a

Terms of Service

Privacy Policy

Contact: info@tinkutara.com