Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49838 by MJS last updated on 11/Dec/18

∫(dx/(√((a+1)cos 2x +4cos x −a+3)))=?

dx(a+1)cos2x+4cosxa+3=?

Commented by MJS last updated on 11/Dec/18

∫(dx/(√((a+1)cos 2x +4cos x −a+3)))=       [t=(x/2) → dx=2dt]  =2∫(dt/(√((a+1)cos 4t +4cos 2t −a+3)))=  =((√2)/2)∫(dt/(cos t (√((a+1)cos^2  t −a))))=       [u=tan t → dt=(du/(u^2 +1)); cos t =(1/(√(u^2 +1)))]  =((√2)/2)∫(du/(√(1−au^2 )))=       [v=(√a)u → du=(dv/(√a))]  =(1/(√(2a)))∫(dv/(√(1−v^2 )))=(1/(√(2a)))arcsin v =(1/(√(2a)))arcsin ((√a)u) =  =(1/(√(2a)))arcsin ((√a)tan t) =(1/(√(2a)))arcsin ((√a)tan (x/2)) +C

dx(a+1)cos2x+4cosxa+3=[t=x2dx=2dt]=2dt(a+1)cos4t+4cos2ta+3==22dtcost(a+1)cos2ta=[u=tantdt=duu2+1;cost=1u2+1]=22du1au2=[v=audu=dva]=12adv1v2=12aarcsinv=12aarcsin(au)==12aarcsin(atant)=12aarcsin(atanx2)+C

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18

∫(dx/(√(−a(1−cos2x)+cos2x+4cosx+3)))  ∫(dx/(√(4cosx+4−(1−cos2x)−a(1−cos2x))))  ∫(dx/(√(4(2cos^2 (x/2))−(2sin^2 x)−a(2sin^2 x))))  ∫(dx/(√(8cos^2 (x/2)−2(a+1)×4sin^2 (x/2)cos^2 (x/2))))  ∫((sec(x/2)dx)/(√(8−8(a+1)sin^2 (x/2))))  (1/(√8))×∫((sec(x/2)dx)/(√(1−(a+1)sin^2 (x/2))))  (1/((√(8(a+1))) ))∫((sec(x/2)dx)/(√((1/(a+1))−sin^2 (x/2))))  (1/(√(8(a+1))))∫((cos(x/2)dx)/(cos^2 (x/2)(√((1/(a+1))−sin^2 (x/2)))))dx  t=sin(x/2)   dt=(1/2)cos(x/2)dx  (1/(√(8(a+1))))∫((2dt)/((1−t^2 )(√((1/(a+1))−t^2 ))))  t=(1/k)   dt=((−1)/k^2 )dk  (1/(√(2(a+1))))∫((−dk)/(k^2 (1−(1/k^2 ))(√((1/(a+1))−(1/k^2 )))))  (1/(√(2(a+1))))∫((−kdk)/((k^2 −1)(√((k^2 /(a+1))−1))))  ((−1)/(√(2(a+1))))∫((kdk)/((k^2 −1)(√((k^2 /(a+1))−1))))  p=k^2  dp=2kdk  ((−1)/(√(2(a+1))))∫(dp/(2(p−1)(√((p/(a+1))−1))))  ((−1)/((√(8(a+1))) ))∫(dp/((p−1)(√((p/(a+1))−1))))  y^2 =(p/(a+1))−1    2ydy=(dp/(a+1))  =((−1)/(√(8(a+1))))∫((2(a+1)ydy)/({(a+1)(y^2 +1)−1}×y))  =((−2(a+1))/(√(8(a+1))))∫(dy/({(a+1)y^2 +a}))  =((−((√(a+1)) ))/(√2))×(1/(a+1))∫(dy/(y^2 +(a/(a+1))))  =((−1)/(√(2(a+1))))×(1/(√(a/(a+1))))tan^(−1) ((y/(√(a/(a+1)))))+c  ((−1)/(√(2a)))tan^(−1) ((((√((p/(a+1))−1)) )/(√(a/(a+1)))))+c  ((−1)/(√(2a)))tan^(−1) (((√((k^2 /(a+1))−1))/(√(a/(a+1)))))  =((−1)/(√(2a)))tan^(−1) ((((√((1/(t^2 (a+1)))−1)) )/(√(a/(a+1)))))  =((−1)/(√(2a)))tan^(−1) (((√((1/(sin^2 ((x/2))(a+1)))−1))/(√(a/(a+1)))))+c

dxa(1cos2x)+cos2x+4cosx+3dx4cosx+4(1cos2x)a(1cos2x)dx4(2cos2x2)(2sin2x)a(2sin2x)dx8cos2x22(a+1)×4sin2x2cos2x2secx2dx88(a+1)sin2x218×secx2dx1(a+1)sin2x218(a+1)secx2dx1a+1sin2x218(a+1)cosx2dxcos2x21a+1sin2x2dxt=sinx2dt=12cosx2dx18(a+1)2dt(1t2)1a+1t2t=1kdt=1k2dk12(a+1)dkk2(11k2)1a+11k212(a+1)kdk(k21)k2a+1112(a+1)kdk(k21)k2a+11p=k2dp=2kdk12(a+1)dp2(p1)pa+1118(a+1)dp(p1)pa+11y2=pa+112ydy=dpa+1=18(a+1)2(a+1)ydy{(a+1)(y2+1)1}×y=2(a+1)8(a+1)dy{(a+1)y2+a}=(a+1)2×1a+1dyy2+aa+1=12(a+1)×1aa+1tan1(yaa+1)+c12atan1(pa+11aa+1)+c12atan1(k2a+11aa+1)=12atan1(1t2(a+1)1aa+1)=12atan1(1sin2(x2)(a+1)1aa+1)+c

Commented by MJS last updated on 11/Dec/18

correct, thank you!

correct,thankyou!

Commented by malwaan last updated on 12/Dec/18

great  thank you

greatthankyou

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18

MJS sir your method is short and tricky,  thank you sir...

MJSsiryourmethodisshortandtricky,thankyousir...

Commented by MJS last updated on 12/Dec/18

you′re welcome. I′m an integral addicted...

yourewelcome.Imanintegraladdicted...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com