Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49953 by maxmathsup by imad last updated on 12/Dec/18

1) calculate ∫_0 ^1 ln(1+ix)dx and ∫_0 ^1 ln(1−ix)dx  2) find the value of ∫_0 ^1 ln(1+x^2 )dx .

1)calculate01ln(1+ix)dxand01ln(1ix)dx2)findthevalueof01ln(1+x2)dx.

Commented by Abdo msup. last updated on 14/Dec/18

1) we have 1+ix =(√(1+x^2 ))((1/(√(1+x^2 ))) +i(x/(√(1+x^2 )))) =(√(1+x^2 ))e^(iarctan(x))   ⇒∫_0 ^1 ln(1+ix)dx =(1/2) ∫_0 ^1 ln(1+x^2 )dx +i ∫_0 ^1  arctanxdx but  ∫_0 ^1 ln(1+x^2 )dx =_(by parts)   [xln(1+x^2 )]_0 ^1  −∫_0 ^1 x ((2x)/(1+x^2 ))dx  =ln(2) −2 ∫_0 ^1  ((1+x^2 −1)/(1+x^2 ))dx=ln(2)−2 +2 ∫_0 ^1    (dx/(1+x^2 ))  =ln(2)−2 +2.(π/4) =ln(2)−2+(π/2)  also by parts  ∫_0 ^1  arctan(x)dx = [x arctanx]_0 ^1  −∫_0 ^1   (x/(1+x^2 ))dx  =(π/4) −[(1/2)ln(1+x^2 )]_0 ^1  =(π/4) −(1/2)ln(2) ⇒  ∫_0 ^1   ln(1+ix)dx =((ln(2))/2) −1+(π/4) +i((π/4) −(1/2)ln(2))

1)wehave1+ix=1+x2(11+x2+ix1+x2)=1+x2eiarctan(x)01ln(1+ix)dx=1201ln(1+x2)dx+i01arctanxdxbut01ln(1+x2)dx=byparts[xln(1+x2)]0101x2x1+x2dx=ln(2)2011+x211+x2dx=ln(2)2+201dx1+x2=ln(2)2+2.π4=ln(2)2+π2alsobyparts01arctan(x)dx=[xarctanx]0101x1+x2dx=π4[12ln(1+x2)]01=π412ln(2)01ln(1+ix)dx=ln(2)21+π4+i(π412ln(2))

Commented by Abdo msup. last updated on 14/Dec/18

also  1−ix =conj(1+ix)=(√(1+x^2 ))e^(−iarctan(x))  ⇒  ln(1−ix) =(1/2)ln(1+x^2 )−i arctanx ⇒  ∫_0 ^1  ln(1−ix)dx =(1/2) ∫_0 ^1 ln(1+x^2 )dx−i ∫_0 ^1  arctanx dx  =((ln(2))/2) −1+(π/4) −i((π/4) −((ln(2))/2)) and we see that  ∫_0 ^1 ln(1−ix)dx =conj(∫_0 ^1 ln(1+ix)dx).

also1ix=conj(1+ix)=1+x2eiarctan(x)ln(1ix)=12ln(1+x2)iarctanx01ln(1ix)dx=1201ln(1+x2)dxi01arctanxdx=ln(2)21+π4i(π4ln(2)2)andweseethat01ln(1ix)dx=conj(01ln(1+ix)dx).

Commented by Abdo msup. last updated on 14/Dec/18

2) by parts  ∫_0 ^1 ln(1+x^2 )dx =[xln(1+x^2 )]_0 ^1  −∫_0 ^1  x ((2x)/(1+x^2 ))dx  =ln(2)−2 ∫_0 ^1   ((1+x^2 −1)/(1+x^2 ))dx =ln(2)−2 +2 ∫_0 ^1   (dx/(1+x^2 ))  =ln(2)−2 +2.(π/4) =ln(2)−2 +(π/2)  complex method  ∫_0 ^1 ln(1+x^2 )dx =∫_0 ^1 ln(1+ix)(1−ix))dx  =∫_0 ^1 ln(1+ix)dx +∫_0 ^1 ln(1−ix)dx  =((ln(2))/2) −1 +(π/4) +((ln(2))/2) −1+(π/4) =ln(2)−2 +(π/2) .

2)byparts01ln(1+x2)dx=[xln(1+x2)]0101x2x1+x2dx=ln(2)2011+x211+x2dx=ln(2)2+201dx1+x2=ln(2)2+2.π4=ln(2)2+π2complexmethod01ln(1+x2)dx=01ln(1+ix)(1ix))dx=01ln(1+ix)dx+01ln(1ix)dx=ln(2)21+π4+ln(2)21+π4=ln(2)2+π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com