All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 49953 by maxmathsup by imad last updated on 12/Dec/18
1)calculate∫01ln(1+ix)dxand∫01ln(1−ix)dx2)findthevalueof∫01ln(1+x2)dx.
Commented by Abdo msup. last updated on 14/Dec/18
1)wehave1+ix=1+x2(11+x2+ix1+x2)=1+x2eiarctan(x)⇒∫01ln(1+ix)dx=12∫01ln(1+x2)dx+i∫01arctanxdxbut∫01ln(1+x2)dx=byparts[xln(1+x2)]01−∫01x2x1+x2dx=ln(2)−2∫011+x2−11+x2dx=ln(2)−2+2∫01dx1+x2=ln(2)−2+2.π4=ln(2)−2+π2alsobyparts∫01arctan(x)dx=[xarctanx]01−∫01x1+x2dx=π4−[12ln(1+x2)]01=π4−12ln(2)⇒∫01ln(1+ix)dx=ln(2)2−1+π4+i(π4−12ln(2))
also1−ix=conj(1+ix)=1+x2e−iarctan(x)⇒ln(1−ix)=12ln(1+x2)−iarctanx⇒∫01ln(1−ix)dx=12∫01ln(1+x2)dx−i∫01arctanxdx=ln(2)2−1+π4−i(π4−ln(2)2)andweseethat∫01ln(1−ix)dx=conj(∫01ln(1+ix)dx).
2)byparts∫01ln(1+x2)dx=[xln(1+x2)]01−∫01x2x1+x2dx=ln(2)−2∫011+x2−11+x2dx=ln(2)−2+2∫01dx1+x2=ln(2)−2+2.π4=ln(2)−2+π2complexmethod∫01ln(1+x2)dx=∫01ln(1+ix)(1−ix))dx=∫01ln(1+ix)dx+∫01ln(1−ix)dx=ln(2)2−1+π4+ln(2)2−1+π4=ln(2)−2+π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com