Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49956 by maxmathsup by imad last updated on 12/Dec/18

find ∫_0 ^1  cos(n arcosx)dx  with n integr natural.

find01cos(narcosx)dxwithnintegrnatural.

Commented by Abdo msup. last updated on 13/Dec/18

we have cos(n arcosx) +i sin(narcosx)  =(cos(arcosx )+isin(arcosx))^n   =(x +i (√(1−x^2 )))^n  and ∫_0 ^1 cos(narcosx)dx  =Re( ∫_0 ^1  (x+i(√(1−x^2 )))^n  dx) but  (x+i(√(1−x^2 )))^n  =Σ_(k=0) ^n   C_n ^k  (i(√(1−x^2 )))^k  x^(n−k)   =Σ_(k=0) ^n   i^k  C_n ^k   (1−x^2 )^(k/2)  x^(n−k)   =Σ_(p=0) ^([(n/2)])   (−1)^p  C_n ^(2p) (1−x^2 )^p   x^(n−2p)   +Σ_(p=0) ^([((n−1)/2)])   i(−1)^p  C_n ^(2p+1)  (1−x^2 )^((2p+1)/2)   x^(n−2p−1)  ⇒  ∫_0 ^1  cos(narcosx)dx =(∫_0 ^1  Σ_(p=0) ^([(n/2)]) (−1)^p  C_n ^(2p)  (1−x^2 )^p  x^(n−2p) dx)  =Σ_(p=0) ^([(n/2)])   (−1)^p  C_n ^(2p)   ∫_0 ^1  (1−x^2 )^p  x^(n−2p)  dx  changement  x =sin t give   ∫_0 ^1  (1−x^2 )^p  x^(n−2p)  dx =∫_0 ^(π/2)  cos^(2p) t sin^(n−2p) t  cost dt   =∫_0 ^(π/2)   cos^(2p+1) t sin^(n−2p) t dt  ...be continued...

wehavecos(narcosx)+isin(narcosx)=(cos(arcosx)+isin(arcosx))n=(x+i1x2)nand01cos(narcosx)dx=Re(01(x+i1x2)ndx)but(x+i1x2)n=k=0nCnk(i1x2)kxnk=k=0nikCnk(1x2)k2xnk=p=0[n2](1)pCn2p(1x2)pxn2p+p=0[n12]i(1)pCn2p+1(1x2)2p+12xn2p101cos(narcosx)dx=(01p=0[n2](1)pCn2p(1x2)pxn2pdx)=p=0[n2](1)pCn2p01(1x2)pxn2pdxchangementx=sintgive01(1x2)pxn2pdx=0π2cos2ptsinn2ptcostdt=0π2cos2p+1tsinn2ptdt...becontinued...

Answered by Smail last updated on 13/Dec/18

t=arcos(x)⇒dt=((−dx)/(√(1−x^2 )))=((−dx)/(√(1−cos^2 t)))  dx=−sin(t)dt  A=−∫_(π/2) ^0 sin(t)cos(nt)dt  =∫_0 ^(π/2) sin(t)cos(nt)dt  by parts   u=cos(nt)⇒u′=−nsin(nt)  v′=sin(t)⇒v=−cos(t)  A=−[cos(t)cos(nt)]_0 ^(π/2) −n∫_0 ^(π/2) sin(nt)cos(t)dt  by parts  u=sin(nt)⇒u′=ncos(nt)  v′=cos(t)⇒v=sin(t)  A=1−n[sin(t)sin(nt)]_0 ^(π/2) +n^2 ∫_0 ^(π/2) sin(t)cos(nt)dt  A=1−nsin(((nπ)/2))+n^2 A  A(1−n^2 )=1−nsin(((nπ)/2))  A=((nsin(((nπ)/2))−1)/(n^2 −1))

t=arcos(x)dt=dx1x2=dx1cos2tdx=sin(t)dtA=π/20sin(t)cos(nt)dt=0π/2sin(t)cos(nt)dtbypartsu=cos(nt)u=nsin(nt)v=sin(t)v=cos(t)A=[cos(t)cos(nt)]0π/2n0π/2sin(nt)cos(t)dtbypartsu=sin(nt)u=ncos(nt)v=cos(t)v=sin(t)A=1n[sin(t)sin(nt)]0π/2+n20π/2sin(t)cos(nt)dtA=1nsin(nπ2)+n2AA(1n2)=1nsin(nπ2)A=nsin(nπ2)1n21

Commented by Abdo msup. last updated on 13/Dec/18

thanks sir Smail..

thankssirSmail..

Commented by Smail last updated on 14/Dec/18

you are quite welcome

youarequitewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com