Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 49961 by maxmathsup by imad last updated on 12/Dec/18

find the sequence (a_n ) wich verify   (Σ_(n=1) ^∞  x^n )(Σ_(n=0) ^∞   (((−x)^n )/(n+1)))=Σ_(n=0) ^∞  a_n x^n   also find the radius of this serie.

$${find}\:{the}\:{sequence}\:\left({a}_{{n}} \right)\:{wich}\:{verify}\: \\ $$$$\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}} \right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−{x}\right)^{{n}} }{{n}+\mathrm{1}}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}} \:\:{also}\:{find}\:{the}\:{radius}\:{of}\:{this}\:{serie}. \\ $$

Commented by Abdo msup. last updated on 13/Dec/18

let α_n =1 ∀n ∈ N and β_n =(((−1)^n )/(n+1)) so  (Σ_(n=1) ^∞  x^n ).(Σ_(n=0) ^∞  (((−1)^n )/(n+1)) x^n ) =(Σ_(n=0) ^∞  α_n x^n ).(Σ_(n=0) ^∞  β_n x^n )  Σ_(n=0) ^∞  a_n x^n   / a_n =Σ_(i+j=n)  α_i  β_j =Σ_(i=0) ^n   (((−1)^(n−i) )/(n−i +1))  ⇒ a_n =Σ_(p=0) ^n   (((−1)^p )/(p+1)) =Σ_(p=1) ^(n+1)    (((−1)^(p−1) )/p)  we have Radius(Σ x^n )=1 and Radiud(Σ (((−x)^n )/(n+1)))=1 ⇒  Re>adius(Σ a_n x^n )≤1 .

$${let}\:\alpha_{{n}} =\mathrm{1}\:\forall{n}\:\in\:{N}\:{and}\:\beta_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:{so} \\ $$$$\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}} \right).\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:{x}^{{n}} \right)\:=\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\alpha_{{n}} {x}^{{n}} \right).\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\beta_{{n}} {x}^{{n}} \right) \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}} \:\:/\:{a}_{{n}} =\sum_{{i}+{j}={n}} \:\alpha_{{i}} \:\beta_{{j}} =\sum_{{i}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−{i}} }{{n}−{i}\:+\mathrm{1}} \\ $$$$\Rightarrow\:{a}_{{n}} =\sum_{{p}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{p}} }{{p}+\mathrm{1}}\:=\sum_{{p}=\mathrm{1}} ^{{n}+\mathrm{1}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{p}−\mathrm{1}} }{{p}} \\ $$$${we}\:{have}\:{Radius}\left(\Sigma\:{x}^{{n}} \right)=\mathrm{1}\:{and}\:{Radiud}\left(\Sigma\:\frac{\left(−{x}\right)^{{n}} }{{n}+\mathrm{1}}\right)=\mathrm{1}\:\Rightarrow \\ $$$${Re}>{adius}\left(\Sigma\:{a}_{{n}} {x}^{{n}} \right)\leqslant\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com