Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 49964 by ajfour last updated on 12/Dec/18

Commented by ajfour last updated on 12/Dec/18

Determine 𝛂 in terms of a and b  if the coloured area is one-fourth  the ellipse area.

$${Determine}\:\boldsymbol{\alpha}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}} \\ $$$${if}\:{the}\:{coloured}\:{area}\:{is}\:{one}-{fourth} \\ $$$${the}\:{ellipse}\:{area}. \\ $$

Commented by MJS last updated on 13/Dec/18

turn it +90°  let b=1  y=a(√(1−x^2 ))  P= (((−1)),(0) )  Q= ((q),((a(√(1−q^2 )))) )  line PQ: y=((a(√(1−q^2 )))/(q+1))(x+1)  ((a(√(1−q^2 )))/(q+1))∫_(−1) ^q (x+1)dx+a∫_q ^1 (√(1−x^2 ))dx=(π/4)a  ⇒ (√(1−q^2 ))=arcsin q ⇒ q≈.673612 ⇒  α=arctan (.441611(a/b))

$$\mathrm{turn}\:\mathrm{it}\:+\mathrm{90}° \\ $$$$\mathrm{let}\:{b}=\mathrm{1} \\ $$$${y}={a}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${P}=\begin{pmatrix}{−\mathrm{1}}\\{\mathrm{0}}\end{pmatrix}\:\:{Q}=\begin{pmatrix}{{q}}\\{{a}\sqrt{\mathrm{1}−{q}^{\mathrm{2}} }}\end{pmatrix} \\ $$$$\mathrm{line}\:{PQ}:\:{y}=\frac{{a}\sqrt{\mathrm{1}−{q}^{\mathrm{2}} }}{{q}+\mathrm{1}}\left({x}+\mathrm{1}\right) \\ $$$$\frac{{a}\sqrt{\mathrm{1}−{q}^{\mathrm{2}} }}{{q}+\mathrm{1}}\underset{−\mathrm{1}} {\overset{{q}} {\int}}\left({x}+\mathrm{1}\right){dx}+{a}\underset{{q}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=\frac{\pi}{\mathrm{4}}{a} \\ $$$$\Rightarrow\:\sqrt{\mathrm{1}−{q}^{\mathrm{2}} }=\mathrm{arcsin}\:{q}\:\Rightarrow\:{q}\approx.\mathrm{673612}\:\Rightarrow \\ $$$$\alpha=\mathrm{arctan}\:\left(.\mathrm{441611}\frac{{a}}{{b}}\right) \\ $$

Answered by mr W last updated on 13/Dec/18

y−b=−(x/(tan α))=−kx  r sin θ−b=−kr cos θ  r=(b/(sin θ+k cos θ))  r^2 (((cos^2  θ)/a^2 )+((sin^2  θ)/b^2 ))=1  r^2 =((a^2 b^2 )/(a^2 sin^2  θ+b^2 cos^2  θ))=(b^2 /(sin^2  θ+λ^2  cos^2  θ))  with λ=(b/a)  (b^2 /((sin θ+k cos θ)^2 ))=(b^2 /(sin^2  θ+λ^2  cos^2  θ))  (1/((tan θ+k)^2 ))=(1/(tan^2  θ+λ^2 ))  ⇒tan^2  θ+2k tan θ+k^2 =tan^2  θ+λ^2   ⇒tan θ_1 =((λ^2 −k^2 )/(2k))  ⇒θ_1 =tan^(−1) ((λ^2 −k^2 )/(2k))  ∫_θ_1  ^(π/2) (1/2)[(b^2 /(sin^2  θ+λ^2  cos^2  θ))−(b^2 /((sin θ+k cos θ)^2 ))]dθ=((πab)/4)  ∫_θ_1  ^(π/2) [(1/(sin^2  θ+λ^2  cos^2  θ))−(1/((sin θ+k cos θ)^2 ))]dθ=(π/(2λ))  [(1/λ) tan^(−1) ((tan θ)/λ)+(1/(k+tan θ))]_θ_1  ^(π/2) =(π/(2λ))  [(1/λ)((π/2)−tan^(−1) ((λ^2 −k^2 )/(2λk)))−(1/(k+((λ^2 −k^2 )/(2k))))]=(π/(2λ))  [(1/λ)((π/2)−tan^(−1) ((λ^2 −k^2 )/(2λk)))−((2k)/(λ^2 +k^2 ))]=(π/(2λ))  tan^(−1) ((k^2 −λ^2 )/(2λk))=((2λk)/(k^2 +λ^2 ))  tan^(−1) ((2λk)/(k^2 −λ^2 ))+((2λk)/(k^2 +λ^2 ))=(π/2)  with μ=(k/λ)  tan^(−1) (2/(μ−(1/μ)))+(2/(μ+(1/μ)))=(π/2)  ⇒μ=(k/λ)=2.2644  ⇒k=(1/(tan α))=2.2644λ=2.2644(b/a)  ⇒α=tan^(−1) ((0.4416a)/b)

$${y}−{b}=−\frac{{x}}{\mathrm{tan}\:\alpha}=−{kx} \\ $$$${r}\:\mathrm{sin}\:\theta−{b}=−{kr}\:\mathrm{cos}\:\theta \\ $$$${r}=\frac{{b}}{\mathrm{sin}\:\theta+{k}\:\mathrm{cos}\:\theta} \\ $$$${r}^{\mathrm{2}} \left(\frac{\mathrm{cos}^{\mathrm{2}} \:\theta}{{a}^{\mathrm{2}} }+\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{{b}^{\mathrm{2}} }\right)=\mathrm{1} \\ $$$${r}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}=\frac{{b}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$${with}\:\lambda=\frac{{b}}{{a}} \\ $$$$\frac{{b}^{\mathrm{2}} }{\left(\mathrm{sin}\:\theta+{k}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} }=\frac{{b}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{tan}\:\theta+{k}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{tan}^{\mathrm{2}} \:\theta+\mathrm{2}{k}\:\mathrm{tan}\:\theta+{k}^{\mathrm{2}} =\mathrm{tan}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{tan}\:\theta_{\mathrm{1}} =\frac{\lambda^{\mathrm{2}} −{k}^{\mathrm{2}} }{\mathrm{2}{k}} \\ $$$$\Rightarrow\theta_{\mathrm{1}} =\mathrm{tan}^{−\mathrm{1}} \frac{\lambda^{\mathrm{2}} −{k}^{\mathrm{2}} }{\mathrm{2}{k}} \\ $$$$\int_{\theta_{\mathrm{1}} } ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{b}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta}−\frac{{b}^{\mathrm{2}} }{\left(\mathrm{sin}\:\theta+{k}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} }\right]{d}\theta=\frac{\pi{ab}}{\mathrm{4}} \\ $$$$\int_{\theta_{\mathrm{1}} } ^{\frac{\pi}{\mathrm{2}}} \left[\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta}−\frac{\mathrm{1}}{\left(\mathrm{sin}\:\theta+{k}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} }\right]{d}\theta=\frac{\pi}{\mathrm{2}\lambda} \\ $$$$\left[\frac{\mathrm{1}}{\lambda}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{tan}\:\theta}{\lambda}+\frac{\mathrm{1}}{{k}+\mathrm{tan}\:\theta}\right]_{\theta_{\mathrm{1}} } ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi}{\mathrm{2}\lambda} \\ $$$$\left[\frac{\mathrm{1}}{\lambda}\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\lambda^{\mathrm{2}} −{k}^{\mathrm{2}} }{\mathrm{2}\lambda{k}}\right)−\frac{\mathrm{1}}{{k}+\frac{\lambda^{\mathrm{2}} −{k}^{\mathrm{2}} }{\mathrm{2}{k}}}\right]=\frac{\pi}{\mathrm{2}\lambda} \\ $$$$\left[\frac{\mathrm{1}}{\lambda}\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\lambda^{\mathrm{2}} −{k}^{\mathrm{2}} }{\mathrm{2}\lambda{k}}\right)−\frac{\mathrm{2}{k}}{\lambda^{\mathrm{2}} +{k}^{\mathrm{2}} }\right]=\frac{\pi}{\mathrm{2}\lambda} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{{k}^{\mathrm{2}} −\lambda^{\mathrm{2}} }{\mathrm{2}\lambda{k}}=\frac{\mathrm{2}\lambda{k}}{{k}^{\mathrm{2}} +\lambda^{\mathrm{2}} } \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}\lambda{k}}{{k}^{\mathrm{2}} −\lambda^{\mathrm{2}} }+\frac{\mathrm{2}\lambda{k}}{{k}^{\mathrm{2}} +\lambda^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}} \\ $$$${with}\:\mu=\frac{{k}}{\lambda} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}}{\mu−\frac{\mathrm{1}}{\mu}}+\frac{\mathrm{2}}{\mu+\frac{\mathrm{1}}{\mu}}=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\mu=\frac{{k}}{\lambda}=\mathrm{2}.\mathrm{2644} \\ $$$$\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}=\mathrm{2}.\mathrm{2644}\lambda=\mathrm{2}.\mathrm{2644}\frac{{b}}{{a}} \\ $$$$\Rightarrow\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{0}.\mathrm{4416}{a}}{{b}} \\ $$

Commented by mr W last updated on 13/Dec/18

sorry sir! I had a mistake, I lost a tan^(−1)   so the solution became simple form.   but this is not true.

$${sorry}\:{sir}!\:{I}\:{had}\:{a}\:{mistake},\:{I}\:{lost}\:{a}\:\mathrm{tan}^{−\mathrm{1}} \\ $$$${so}\:{the}\:{solution}\:{became}\:{simple}\:{form}.\: \\ $$$${but}\:{this}\:{is}\:{not}\:{true}. \\ $$

Commented by MJS last updated on 13/Dec/18

this is different from my solution...  please check mine

$$\mathrm{this}\:\mathrm{is}\:\mathrm{different}\:\mathrm{from}\:\mathrm{my}\:\mathrm{solution}... \\ $$$$\mathrm{please}\:\mathrm{check}\:\mathrm{mine} \\ $$

Commented by MJS last updated on 13/Dec/18

ok. I also went through your solution but  couldn′t find a mistake. thank you for  checking!

$$\mathrm{ok}.\:\mathrm{I}\:\mathrm{also}\:\mathrm{went}\:\mathrm{through}\:\mathrm{your}\:\mathrm{solution}\:\mathrm{but} \\ $$$$\mathrm{couldn}'\mathrm{t}\:\mathrm{find}\:\mathrm{a}\:\mathrm{mistake}.\:\mathrm{thank}\:\mathrm{you}\:\mathrm{for} \\ $$$$\mathrm{checking}! \\ $$

Commented by mr W last updated on 13/Dec/18

now we have the same result.

$${now}\:{we}\:{have}\:{the}\:{same}\:{result}. \\ $$

Commented by ajfour last updated on 13/Dec/18

Congratulations and thanks   to both Sirs.

$${Congratulations}\:{and}\:{thanks}\: \\ $$$${to}\:{both}\:{Sirs}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com