All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 49968 by maxmathsup by imad last updated on 12/Dec/18
findf(x)=∫0+∞tarctan(xt)1+t4dt
Commented by mathmax by abdo last updated on 03/Nov/19
wehave2f(x)=∫−∞+∞tarctan(xt)t4+1dtletW(z)=zarctan(xz)z4+1⇒f(z)=zarctan(xz)(z2−i)(z2+i)=zarctan(xz)(z−i)(z+i)(z−−i)(z+−i)=zarctan(xz)(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+eiπ4)∫−∞+∞W(z)dz=2iπ{Res(W,eiπ4)+Res(W,−e−iπ4)}Res(W,eiπ4)=limz→eiπ4(z−eiπ4)W(z)=eiπ4arctan(xeiπ4)2eiπ4(2i)=14iarctan(xeiπ4)Res(W,−e−iπ4)=limz→−e−iπ4(z+e−iπ4)W(z)=−e−iπ4arctan(−xe−iπ4)(−2e−iπ4)(−2i)=14iarctan(xe−iπ4)⇒∫−∞+∞W(z)dz=2iπ{14iarctan(xeiπ4)+14iarctan(xe−iπ4)}=π2{arctan(xeiπ4)+arctan(xe−iπ4)}=2f(x)⇒f(x)=π4{arctan(xeiπ4)+arctan(xe−iπ4)}resttofindarctan(z)+arctan(z−)...becontinued..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com