Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49968 by maxmathsup by imad last updated on 12/Dec/18

find f(x) =∫_0 ^(+∞)    ((t arctan(xt))/(1+t^4 )) dt

findf(x)=0+tarctan(xt)1+t4dt

Commented by mathmax by abdo last updated on 03/Nov/19

we have 2f(x)=∫_(−∞) ^(+∞)   ((tarctan(xt))/(t^4  +1))dt  let W(z)=((z arctan(xz))/(z^4  +1))  ⇒f(z)=((z arctan(xz))/((z^2 −i)(z^2 +i))) =((z arctan(xz))/((z−(√i))(z+(√i))(z−(√(−i)))(z+(√(−i)))))  =((z arctan(xz))/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^((iπ)/4) )))  ∫_(−∞) ^(+∞) W(z)dz =2iπ{ Res(W,e^((iπ)/4) ) +Res(W,−e^(−((iπ)/4)) )}  Res(W,e^((iπ)/4) ) =lim_(z→e^((iπ)/4) )   (z−e^((iπ)/4) )W(z)=((e^((iπ)/4)  arctan(xe^((iπ)/4) ))/(2e^((iπ)/4) (2i)))  =(1/(4i)) arctan(x e^((iπ)/4) )  Res(W,−e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )    (z+e^(−((iπ)/4)) )W(z)  =((−e^(−((iπ)/4))  arctan(−xe^(−((iπ)/4)) ))/((−2e^(−((iπ)/4)) )(−2i))) =(1/(4i)) arctan(x e^(−((iπ)/4)) ) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ{(1/(4i))arctan(xe^((iπ)/4) ) +(1/(4i)) arctan(x e^(−((iπ)/4)) )}  =(π/2){ arctan(xe^((iπ)/4) )+arctan(xe^(−((iπ)/4)) )} =2f(x) ⇒  f(x)=(π/4){ arctan(xe^((iπ)/4) )+arctan(xe^(−((iπ)/4)) )}  rest to find arctan(z) +arctan(z^− )...be continued..

wehave2f(x)=+tarctan(xt)t4+1dtletW(z)=zarctan(xz)z4+1f(z)=zarctan(xz)(z2i)(z2+i)=zarctan(xz)(zi)(z+i)(zi)(z+i)=zarctan(xz)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)+W(z)dz=2iπ{Res(W,eiπ4)+Res(W,eiπ4)}Res(W,eiπ4)=limzeiπ4(zeiπ4)W(z)=eiπ4arctan(xeiπ4)2eiπ4(2i)=14iarctan(xeiπ4)Res(W,eiπ4)=limzeiπ4(z+eiπ4)W(z)=eiπ4arctan(xeiπ4)(2eiπ4)(2i)=14iarctan(xeiπ4)+W(z)dz=2iπ{14iarctan(xeiπ4)+14iarctan(xeiπ4)}=π2{arctan(xeiπ4)+arctan(xeiπ4)}=2f(x)f(x)=π4{arctan(xeiπ4)+arctan(xeiπ4)}resttofindarctan(z)+arctan(z)...becontinued..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com