Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 49987 by ajfour last updated on 12/Dec/18

Commented by ajfour last updated on 12/Dec/18

a ≠ b , find c  in terms of a and b.

$${a}\:\neq\:{b}\:,\:{find}\:\boldsymbol{{c}}\:\:{in}\:{terms}\:{of}\:{a}\:{and}\:{b}. \\ $$

Commented by MJS last updated on 13/Dec/18

interestingly the only possibility that ABC  is rectangular is with  a=b((1+(√5))/2) ⇒ c=b((√(2+2(√5)))/2)  with ((1+(√5))/2) being the golden ratio

$$\mathrm{interestingly}\:\mathrm{the}\:\mathrm{only}\:\mathrm{possibility}\:\mathrm{that}\:{ABC} \\ $$$$\mathrm{is}\:\mathrm{rectangular}\:\mathrm{is}\:\mathrm{with} \\ $$$${a}={b}\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\Rightarrow\:{c}={b}\frac{\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}} \\ $$$$\mathrm{with}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\mathrm{being}\:\mathrm{the}\:\mathrm{golden}\:\mathrm{ratio} \\ $$

Commented by ajfour last updated on 13/Dec/18

how to get (a/b) Sir ?

$${how}\:{to}\:{get}\:\frac{{a}}{{b}}\:{Sir}\:? \\ $$

Commented by MJS last updated on 13/Dec/18

let b=1 for calculation.

$$\mathrm{let}\:{b}=\mathrm{1}\:\mathrm{for}\:\mathrm{calculation}. \\ $$

Answered by mr W last updated on 13/Dec/18

C(0,0), B(a,0), A(b cos 2θ,b sin 2θ)  Q=midpoint AC  Q((b/2) cos 2θ, (b/2) sin 2θ)  eqn. BQ:  (y/((b/2) sin 2θ))=((x−a)/((b/2)cos 2θ−a))  (y_P /((b/2) sin 2θ))=((b cos 2θ−a)/((b/2)cos 2θ−a))  ⇒y_P =((b sin 2θ (b cos 2θ−a))/(b cos 2θ−2a))  y_P =b cos 2θ tan θ  ⇒((b sin 2θ (b cos 2θ−a))/(b cos 2θ−2a))=b cos 2θ tan θ  ⇒((tan 2θ (b cos 2θ−a))/(b cos 2θ−2a))=tan θ  with λ=(a/b), μ=cos 2θ  ⇒((tan 2θ (cos 2θ−λ))/(cos 2θ−2λ))=tan θ=(√((1−cos 2θ)/(1+cos 2θ)))  ⇒(((√(1−cos^2  2θ))(cos 2θ−λ))/(cos 2θ(cos 2θ−2λ)))=(√((1−cos 2θ)/(1+cos 2θ)))  ⇒(((μ−λ))/(μ(μ−2λ)))=(1/(1+μ))  (1+μ)(μ−λ)=μ(μ−2λ)  (1+λ)μ=λ  ⇒μ=(λ/(1+λ))=(a/(a+b))  c^2 =a^2 +b^2 −2ab cos 2θ=a^2 +b^2 −2abμ  c^2 =a^2 +b^2 −((2a^2 b)/(a+b))  ⇒c=(√(a^2 +b^2 −((2a^2 b)/(a+b))))

$${C}\left(\mathrm{0},\mathrm{0}\right),\:{B}\left({a},\mathrm{0}\right),\:{A}\left({b}\:\mathrm{cos}\:\mathrm{2}\theta,{b}\:\mathrm{sin}\:\mathrm{2}\theta\right) \\ $$$${Q}={midpoint}\:{AC} \\ $$$${Q}\left(\frac{{b}}{\mathrm{2}}\:\mathrm{cos}\:\mathrm{2}\theta,\:\frac{{b}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta\right) \\ $$$${eqn}.\:{BQ}: \\ $$$$\frac{{y}}{\frac{{b}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta}=\frac{{x}−{a}}{\frac{{b}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}\theta−{a}} \\ $$$$\frac{{y}_{{P}} }{\frac{{b}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\theta}=\frac{{b}\:\mathrm{cos}\:\mathrm{2}\theta−{a}}{\frac{{b}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}\theta−{a}} \\ $$$$\Rightarrow{y}_{{P}} =\frac{{b}\:\mathrm{sin}\:\mathrm{2}\theta\:\left({b}\:\mathrm{cos}\:\mathrm{2}\theta−{a}\right)}{{b}\:\mathrm{cos}\:\mathrm{2}\theta−\mathrm{2}{a}} \\ $$$${y}_{{P}} ={b}\:\mathrm{cos}\:\mathrm{2}\theta\:\mathrm{tan}\:\theta \\ $$$$\Rightarrow\frac{{b}\:\mathrm{sin}\:\mathrm{2}\theta\:\left({b}\:\mathrm{cos}\:\mathrm{2}\theta−{a}\right)}{{b}\:\mathrm{cos}\:\mathrm{2}\theta−\mathrm{2}{a}}={b}\:\mathrm{cos}\:\mathrm{2}\theta\:\mathrm{tan}\:\theta \\ $$$$\Rightarrow\frac{\mathrm{tan}\:\mathrm{2}\theta\:\left({b}\:\mathrm{cos}\:\mathrm{2}\theta−{a}\right)}{{b}\:\mathrm{cos}\:\mathrm{2}\theta−\mathrm{2}{a}}=\mathrm{tan}\:\theta \\ $$$${with}\:\lambda=\frac{{a}}{{b}},\:\mu=\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\Rightarrow\frac{\mathrm{tan}\:\mathrm{2}\theta\:\left(\mathrm{cos}\:\mathrm{2}\theta−\lambda\right)}{\mathrm{cos}\:\mathrm{2}\theta−\mathrm{2}\lambda}=\mathrm{tan}\:\theta=\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}} \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\theta}\left(\mathrm{cos}\:\mathrm{2}\theta−\lambda\right)}{\mathrm{cos}\:\mathrm{2}\theta\left(\mathrm{cos}\:\mathrm{2}\theta−\mathrm{2}\lambda\right)}=\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}} \\ $$$$\Rightarrow\frac{\left(\mu−\lambda\right)}{\mu\left(\mu−\mathrm{2}\lambda\right)}=\frac{\mathrm{1}}{\mathrm{1}+\mu} \\ $$$$\left(\mathrm{1}+\mu\right)\left(\mu−\lambda\right)=\mu\left(\mu−\mathrm{2}\lambda\right) \\ $$$$\left(\mathrm{1}+\lambda\right)\mu=\lambda \\ $$$$\Rightarrow\mu=\frac{\lambda}{\mathrm{1}+\lambda}=\frac{{a}}{{a}+{b}} \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\mathrm{2}\theta={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mu \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\frac{\mathrm{2}{a}^{\mathrm{2}} {b}}{{a}+{b}} \\ $$$$\Rightarrow{c}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\frac{\mathrm{2}{a}^{\mathrm{2}} {b}}{{a}+{b}}} \\ $$

Commented by ajfour last updated on 13/Dec/18

Very Nice Sir! Thanks a lot.

$${Very}\:{Nice}\:{Sir}!\:{Thanks}\:{a}\:{lot}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com