Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 85153 by reprins last updated on 19/Mar/20

∫(√(4x^2 −4))dx = ...

4x24dx=...

Commented by mathmax by abdo last updated on 19/Mar/20

A =∫(√(4x^2 −4))dx =2∫(√(x^2 −1))dx  we do the changement x=ch(t)  ⇒A =2 ∫sh(t)sh(t)dt =2 ∫ ((ch(2t)−1)/2)dt  =(1/2)sh(2t)−t +C =sh(t)ch(t)−t +C  =x(√(x^2 −1)) −argch(x) +C =x(√(x^2 −1)) −ln(x+(√(x^2 −1))) +C

A=4x24dx=2x21dxwedothechangementx=ch(t)A=2sh(t)sh(t)dt=2ch(2t)12dt=12sh(2t)t+C=sh(t)ch(t)t+C=xx21argch(x)+C=xx21ln(x+x21)+C

Answered by john santu last updated on 19/Mar/20

2∫(√(x^2 −1)) dx =K  let x = sec t   K= 2∫ (√(sec^2 t−1)) sec t tan t dt  K= 2 ∫ sec t tan^2 t dt   K = 2[∫ sec^3 t dt − ln ∣sec t + tan t ∣ ]  for I= ∫ sec^3 t dt = ∫ sec t d(tan t)  I = sec t tan t − ∫ tan^2 t sec t dt  I = sec t tan t − ∫ sec^3 t dt + ln ∣sec t+tan t∣  2I = sec t tan t + ln ∣sec t+tan t∣  I = (1/2)sec t tan t +(1/2) ln ∣sec t+tan t∣  K = sec t tan t − ln ∣sec t+tan t∣ + c  ∴ K = x(√(x^2 −1 )) −ln ∣x+(√(x^2 −1)) ∣ +c

2x21dx=Kletx=sectK=2sec2t1secttantdtK=2secttan2tdtK=2[sec3tdtlnsect+tant]forI=sec3tdt=sectd(tant)I=secttanttan2tsectdtI=secttantsec3tdt+lnsect+tant2I=secttant+lnsect+tantI=12secttant+12lnsect+tantK=secttantlnsect+tant+cK=xx21lnx+x21+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com