Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 92888 by s.ayeni14@yahoo.com last updated on 09/May/20

∫((5−t)/(1+(√((t−4)))))dt

5t1+(t4)dt

Commented by mathmax by abdo last updated on 09/May/20

I =∫((5−t)/(1+(√(t−4))))dt we do the changement (√(t−4))=x ⇒t−4=x^2  ⇒  I =∫((5−(x^2 +4))/(1+x))(2x)dx =2∫  ((1−x^2 )/(1+x))xdx  =2∫ (1−x)xdx =2∫ (x−x^2 )dx =2((x^2 /2)−(1/3)x^3 ) +C  =x^2  −(2/3)x^3  +C =t−4 −(2/3)(t−4)(√(t−4)) +C

I=5t1+t4dtwedothechangementt4=xt4=x2I=5(x2+4)1+x(2x)dx=21x21+xxdx=2(1x)xdx=2(xx2)dx=2(x2213x3)+C=x223x3+C=t423(t4)t4+C

Commented by john santu last updated on 09/May/20

(√(t−4)) = u ⇒dt = 2u du   ∫ ((5−(u^2 +4) 2u du)/(1+u )) =   ∫ (((1−u)(1+u)2u du)/(1+u)) =   ∫ (2u−2u^2 ) du = u^2 −(2/3)u^3  +c   = (2/3)u^2 ((3/2)−u) +c   = (2/3)(t−4)((3/2)−(√(t−4))) +c

t4=udt=2udu5(u2+4)2udu1+u=(1u)(1+u)2udu1+u=(2u2u2)du=u223u3+c=23u2(32u)+c=23(t4)(32t4)+c

Commented by s.ayeni14@yahoo.com last updated on 09/May/20

thank you

thankyou

Answered by maths mind last updated on 10/May/20

5−t=1−(t−4)  =(1−(√(t−4)))(1+(√(t−4)))

5t=1(t4)=(1t4)(1+t4)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com