Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50007 by Joel578 last updated on 13/Dec/18

For a < x < b, find   ∫_a ^b  (√(x−a)) . (√(b−x)) dx

$$\mathrm{For}\:{a}\:<\:{x}\:<\:{b},\:\mathrm{find}\: \\ $$ $$\underset{{a}} {\overset{{b}} {\int}}\:\sqrt{{x}−{a}}\:.\:\sqrt{{b}−{x}}\:{dx} \\ $$

Commented byAbdo msup. last updated on 13/Dec/18

changement (√(x−a))=t give x−a=t^2  ⇒  I =∫_0 ^(√(b−a)) t(√(b−(a+t^2 )))2t dt =2∫_0 ^(√(b−a)) t^2 (√(b−a−t^2 ))dt  =_(t=(√(b−a))sinu)   2 ∫_0 ^(π/2)  (b−a)sin^2 u(√(b−a))cosu (√(b−a))cosu du  =2(b−a)^2  ∫_0 ^(π/2)  sin^2 u cos^2 u du  =2(b−a)^2  (1/4) ∫_0 ^(π/2)  sin^2 (2u) du  =(((b−a)^2 )/2) ∫_0 ^(π/2)  ((1−cos(4u))/2) du  =(((b−a)^2 )/4) ∫_0 ^(π/2)   (1−cos(4u))du  =(π/8)(b−a)^2  −(((b−a)^2 )/(16))[sin(4u)]_0 ^(π/2)   ★I=(π/8)(b−a)^2  ★

$${changement}\:\sqrt{{x}−{a}}={t}\:{give}\:{x}−{a}={t}^{\mathrm{2}} \:\Rightarrow \\ $$ $${I}\:=\int_{\mathrm{0}} ^{\sqrt{{b}−{a}}} {t}\sqrt{{b}−\left({a}+{t}^{\mathrm{2}} \right)}\mathrm{2}{t}\:{dt}\:=\mathrm{2}\int_{\mathrm{0}} ^{\sqrt{{b}−{a}}} {t}^{\mathrm{2}} \sqrt{{b}−{a}−{t}^{\mathrm{2}} }{dt} \\ $$ $$=_{{t}=\sqrt{{b}−{a}}{sinu}} \:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({b}−{a}\right){sin}^{\mathrm{2}} {u}\sqrt{{b}−{a}}{cosu}\:\sqrt{{b}−{a}}{cosu}\:{du} \\ $$ $$=\mathrm{2}\left({b}−{a}\right)^{\mathrm{2}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}} {u}\:{cos}^{\mathrm{2}} {u}\:{du} \\ $$ $$=\mathrm{2}\left({b}−{a}\right)^{\mathrm{2}} \:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}} \left(\mathrm{2}{u}\right)\:{du} \\ $$ $$=\frac{\left({b}−{a}\right)^{\mathrm{2}} }{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{cos}\left(\mathrm{4}{u}\right)}{\mathrm{2}}\:{du} \\ $$ $$=\frac{\left({b}−{a}\right)^{\mathrm{2}} }{\mathrm{4}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\left(\mathrm{1}−{cos}\left(\mathrm{4}{u}\right)\right){du} \\ $$ $$=\frac{\pi}{\mathrm{8}}\left({b}−{a}\right)^{\mathrm{2}} \:−\frac{\left({b}−{a}\right)^{\mathrm{2}} }{\mathrm{16}}\left[{sin}\left(\mathrm{4}{u}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$ $$\bigstar{I}=\frac{\pi}{\mathrm{8}}\left({b}−{a}\right)^{\mathrm{2}} \:\bigstar \\ $$

Answered by ajfour last updated on 13/Dec/18

let  x− ((a+b)/2) = t  ∫_(−((b−a)/2)) ^(  ((b−a)/2)) (√(t+((b−a)/2))) (√(((b−a)/2)−t)) dt  let    c = ((b−a)/2)  =∫_(−c) ^(  c) (√(c^2 −t^2 )) dt = 2∫_0 ^(  c) (√(c^2 −t^2 )) dt  = 2[(t/2)(√(c^2 −t^2 ))+(c^2 /2)sin^(−1) (t/c)]_0 ^c   =  ((c^2 π)/2) = (((b−a)^2 π)/8) .

$${let}\:\:{x}−\:\frac{{a}+{b}}{\mathrm{2}}\:=\:{t} \\ $$ $$\int_{−\frac{{b}−{a}}{\mathrm{2}}} ^{\:\:\frac{{b}−{a}}{\mathrm{2}}} \sqrt{{t}+\frac{{b}−{a}}{\mathrm{2}}}\:\sqrt{\frac{{b}−{a}}{\mathrm{2}}−{t}}\:{dt} \\ $$ $${let}\:\:\:\:{c}\:=\:\frac{{b}−{a}}{\mathrm{2}} \\ $$ $$=\int_{−{c}} ^{\:\:{c}} \sqrt{{c}^{\mathrm{2}} −{t}^{\mathrm{2}} }\:{dt}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\:{c}} \sqrt{{c}^{\mathrm{2}} −{t}^{\mathrm{2}} }\:{dt} \\ $$ $$=\:\mathrm{2}\left[\frac{{t}}{\mathrm{2}}\sqrt{{c}^{\mathrm{2}} −{t}^{\mathrm{2}} }+\frac{{c}^{\mathrm{2}} }{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \frac{{t}}{{c}}\right]_{\mathrm{0}} ^{{c}} \\ $$ $$=\:\:\frac{{c}^{\mathrm{2}} \pi}{\mathrm{2}}\:=\:\frac{\left({b}−{a}\right)^{\mathrm{2}} \pi}{\mathrm{8}}\:. \\ $$

Commented byMJS last updated on 13/Dec/18

grea solutiont!

$$\mathrm{grea}\:\mathrm{solutiont}! \\ $$

Commented byajfour last updated on 13/Dec/18

When we come across matters  that do not require our attention  at this moment, although are  necessary for our conclusion,  then it is better to represent them  by the briefest possible symbols.    - Rene Descartes (Discourse on Method)

$${When}\:{we}\:{come}\:{across}\:{matters} \\ $$ $${that}\:{do}\:{not}\:{require}\:{our}\:{attention} \\ $$ $${at}\:{this}\:{moment},\:{although}\:{are} \\ $$ $${necessary}\:{for}\:{our}\:{conclusion}, \\ $$ $${then}\:{it}\:{is}\:{better}\:{to}\:{represent}\:{them} \\ $$ $${by}\:{the}\:{briefest}\:{possible}\:{symbols}. \\ $$ $$\:\:-\:{Rene}\:{Descartes}\:\left({Discourse}\:{on}\:{Method}\right) \\ $$

Commented byJoel578 last updated on 13/Dec/18

very well Sir

$${very}\:{well}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com