Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 50064 by mondodotto@gmail.com last updated on 13/Dec/18

if y^x =x^y    and y and x are both not  equal to 0 and l  find the value of x and y

ifyx=xyandyandxarebothnotequalto0andlfindthevalueofxandy

Answered by Necxx last updated on 13/Dec/18

x=y=2=4 from omega function

x=y=2=4fromomegafunction

Answered by mr W last updated on 14/Dec/18

there are infinite solutions.    x=y=a is a solution with a∈R ∪ a>0    x=a  y^a =a^y   y=a^(y/a)   y=e^((ln a)(y/a))   ye^(−(ln a)(y/a)) =1  −(ln a)(y/a)e^(−(ln a)(y/a)) =−((ln a)/a)  −(ln a)(y/a)=W(−((ln a)/a)) (Lambert W function)  ⇒y=−(a/(ln a))W(−((ln a)/a))    ⇒solution is   { ((x=a, a∈R and a>0)),((y=a)) :}   { ((x=a, a∈R and a>1)),((y=−(a/(ln a))W(−((ln a)/a)))) :}    examples:  x=(1/2):  y=(1/(2ln 2))W(2ln 2)=((0.6931)/(2ln 2))=0.5    x=2:  y=−(2/(ln 2))W(−((ln 2)/2))= { ((−(2/(ln 2))×(−0.6931)=2)),((−(2/(ln 2))×(−1.3863)=4)) :}    x=5:  y=−(5/(ln 5))W(−((ln 5)/5))= { ((−(5/(ln 5))×(−0.5681)=1.7649)),((−(5/(ln 5))×(−1.6094)=5)) :}

thereareinfinitesolutions.x=y=aisasolutionwithaRa>0x=aya=ayy=ayay=e(lna)yaye(lna)ya=1(lna)yae(lna)ya=lnaa(lna)ya=W(lnaa)(LambertWfunction)y=alnaW(lnaa)solutionis{x=a,aRanda>0y=a{x=a,aRanda>1y=alnaW(lnaa)examples:x=12:y=12ln2W(2ln2)=0.69312ln2=0.5x=2:y=2ln2W(ln22)={2ln2×(0.6931)=22ln2×(1.3863)=4x=5:y=5ln5W(ln55)={5ln5×(0.5681)=1.76495ln5×(1.6094)=5

Commented by Pk1167156@gmail.com last updated on 14/Dec/18

you are right sir.

Commented by Pk1167156@gmail.com last updated on 14/Dec/18

but only for x=y

Commented by mr W last updated on 14/Dec/18

why did you say only for x=y?  as I have proved:  for 0<x≤1 there is only one value for y,   and it is y=x.  but for x>1, there are always^(∗))  two values  for y, they are y=−(x/(ln x))W(−((ln x)/x)), this  W−function delivers two  results, i.e.  one value of y is x, the other one is not x.  for example if x=2, y=−(2/(ln 2))W(−((ln 2)/2))= { (2),(4) :}  so we have two solutions: (2,2) and   (2,4). you can check:  2^2 =2^2  and 2^4 =4^2 .    ^(∗)) exception: when ((ln x)/x)=(1/e) or x=e,  y=−(x/(ln x))W(−((ln x)/x)) has only one value:  y=e=x.

whydidyousayonlyforx=y?asIhaveproved:for0<x1thereisonlyonevaluefory,anditisy=x.butforx>1,therearealways)twovaluesfory,theyarey=xlnxW(lnxx),thisWfunctiondeliverstworesults,i.e.onevalueofyisx,theotheroneisnotx.forexampleifx=2,y=2ln2W(ln22)={24sowehavetwosolutions:(2,2)and(2,4).youcancheck:22=22and24=42.)exception:whenlnxx=1eorx=e,y=xlnxW(lnxx)hasonlyonevalue:y=e=x.

Commented by mondodotto@gmail.com last updated on 14/Dec/18

thank you

thankyou

Answered by mr W last updated on 15/Dec/18

an other way without using Lambert  function  the solution x=y=any real number >0  is clear. we only need to find the  solution for x≠y.  let y=λx  (λx)^x =x^((λx))   λx=x^λ   λ=x^(λ−1)   ⇒x=λ^(1/(λ−1))   y=λ×λ^(1/(λ−1)) =λ^(1+(1/(λ−1)))   ⇒y=λ^(λ/(λ−1))   i.e. the general solution is   { ((x=λ^(1/(λ−1)) )),((y=λ^(λ/(λ−1)) )) :}   with λ>1  examples:  λ=2⇒x=2, y=4  λ=3⇒x=(√3), y=3(√3)  λ=4⇒x=^3 (√4), y=4^3 (√4)  ......

anotherwaywithoutusingLambertfunctionthesolutionx=y=anyrealnumber>0isclear.weonlyneedtofindthesolutionforxy.lety=λx(λx)x=x(λx)λx=xλλ=xλ1x=λ1λ1y=λ×λ1λ1=λ1+1λ1y=λλλ1i.e.thegeneralsolutionis{x=λ1λ1y=λλλ1withλ>1examples:λ=2x=2,y=4λ=3x=3,y=33λ=4x=34,y=434......

Terms of Service

Privacy Policy

Contact: info@tinkutara.com