Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 50065 by peter frank last updated on 13/Dec/18

Answered by math1967 last updated on 13/Dec/18

y^2 =4ax ∴x=(y^2 /(4a))  now lx+my+n=0  ⇒((ly^2 )/(4a)) +my+n=0  ⇒ly^2 +4amy+4an=0 ......3  now lx+my+c=0 touches if eqn3 have  equal roots so discriminant ofeqn3  will be 0  ∴16a^2 m^2 −4.l.4an=0  ∴am^2 =ln is condition Ans

$${y}^{\mathrm{2}} =\mathrm{4}{ax}\:\therefore{x}=\frac{{y}^{\mathrm{2}} }{\mathrm{4}{a}} \\ $$$${now}\:{lx}+{my}+{n}=\mathrm{0} \\ $$$$\Rightarrow\frac{{ly}^{\mathrm{2}} }{\mathrm{4}{a}}\:+{my}+{n}=\mathrm{0} \\ $$$$\Rightarrow{ly}^{\mathrm{2}} +\mathrm{4}{amy}+\mathrm{4}{an}=\mathrm{0}\:......\mathrm{3} \\ $$$${now}\:{lx}+{my}+{c}=\mathrm{0}\:{touches}\:{if}\:{eqn}\mathrm{3}\:{have} \\ $$$${equal}\:{roots}\:{so}\:{discriminant}\:{ofeqn}\mathrm{3} \\ $$$${will}\:{be}\:\mathrm{0} \\ $$$$\therefore\mathrm{16}{a}^{\mathrm{2}} {m}^{\mathrm{2}} −\mathrm{4}.{l}.\mathrm{4}{an}=\mathrm{0} \\ $$$$\therefore{am}^{\mathrm{2}} ={ln}\:{is}\:{condition}\:{Ans} \\ $$

Commented by peter frank last updated on 13/Dec/18

thank you

$${thank}\:{you}\: \\ $$

Commented by math1967 last updated on 14/Dec/18

welcome

$${welcome} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Dec/18

y^2 =4ax  y×y=2a(x+x)  eqn tangent at(x_0 ,y_0 )  yy_0 =2a(x+x_0 )  y(y_0 )+x(−2a)+(−2ax_0 )=0  x(−2a)+y(y_0 )+(−2ax_0 )=0→eqn 1  lx+my+n=0  →2  eqn 1 and 2 are same so  ((−2a)/l)=(y_0 /m)=((−2ax_0 )/n)  x_0 =(n/l)    y_0 =((−2am)/l) point x_0 andy_0  les on y^2 =4ax  (((−2am)/l))^2 =4a((n/l))  ((4a^2 m^2 )/l^2 )=((4an)/l)  am^2 =nl

$${y}^{\mathrm{2}} =\mathrm{4}{ax} \\ $$$${y}×{y}=\mathrm{2}{a}\left({x}+{x}\right) \\ $$$${eqn}\:{tangent}\:{at}\left({x}_{\mathrm{0}} ,{y}_{\mathrm{0}} \right) \\ $$$${yy}_{\mathrm{0}} =\mathrm{2}{a}\left({x}+{x}_{\mathrm{0}} \right) \\ $$$${y}\left({y}_{\mathrm{0}} \right)+{x}\left(−\mathrm{2}{a}\right)+\left(−\mathrm{2}{ax}_{\mathrm{0}} \right)=\mathrm{0} \\ $$$${x}\left(−\mathrm{2}{a}\right)+{y}\left({y}_{\mathrm{0}} \right)+\left(−\mathrm{2}{ax}_{\mathrm{0}} \right)=\mathrm{0}\rightarrow{eqn}\:\mathrm{1} \\ $$$${lx}+{my}+{n}=\mathrm{0}\:\:\rightarrow\mathrm{2} \\ $$$${eqn}\:\mathrm{1}\:{and}\:\mathrm{2}\:{are}\:{same}\:{so} \\ $$$$\frac{−\mathrm{2}{a}}{{l}}=\frac{{y}_{\mathrm{0}} }{{m}}=\frac{−\mathrm{2}{ax}_{\mathrm{0}} }{{n}} \\ $$$${x}_{\mathrm{0}} =\frac{{n}}{{l}}\:\:\:\:{y}_{\mathrm{0}} =\frac{−\mathrm{2}{am}}{{l}}\:{point}\:{x}_{\mathrm{0}} {andy}_{\mathrm{0}} \:{les}\:{on}\:{y}^{\mathrm{2}} =\mathrm{4}{ax} \\ $$$$\left(\frac{−\mathrm{2}{am}}{{l}}\right)^{\mathrm{2}} =\mathrm{4}{a}\left(\frac{{n}}{{l}}\right) \\ $$$$\frac{\mathrm{4}{a}^{\mathrm{2}} {m}^{\mathrm{2}} }{{l}^{\mathrm{2}} }=\frac{\mathrm{4}{an}}{{l}} \\ $$$${am}^{\mathrm{2}} ={nl} \\ $$$$ \\ $$$$ \\ $$

Commented by peter frank last updated on 13/Dec/18

thank you

$${thank}\:{you} \\ $$

Answered by peter frank last updated on 13/Dec/18

from equation of tangent  x−ty+at^2 =0......(1)  lx+my+n=0.......(2)  x−ty+at^2 =lx+my+n  lx=x    1=(1/l).....(i)  −ty=my   1=((-t)/m)....(ii)  at^2 =n  ((at^2 )/n)=1....(iii)  by comparrison  ((at^2 )/n)=(1/l)=((-t)/m)  t^2 =(n/(al))       −t=(m/l)  ln=am^2

$${from}\:{equation}\:{of}\:{tangent} \\ $$$${x}−{ty}+{at}^{\mathrm{2}} =\mathrm{0}......\left(\mathrm{1}\right) \\ $$$${lx}+{my}+{n}=\mathrm{0}.......\left(\mathrm{2}\right) \\ $$$${x}−{ty}+{at}^{\mathrm{2}} ={lx}+{my}+{n} \\ $$$${lx}={x}\:\:\:\:\mathrm{1}=\frac{\mathrm{1}}{{l}}.....\left({i}\right) \\ $$$$−{ty}={my}\:\:\:\mathrm{1}=\frac{-\mathrm{t}}{\mathrm{m}}....\left({ii}\right) \\ $$$${at}^{\mathrm{2}} ={n} \\ $$$$\frac{{at}^{\mathrm{2}} }{{n}}=\mathrm{1}....\left({iii}\right) \\ $$$${by}\:{comparrison} \\ $$$$\frac{{at}^{\mathrm{2}} }{{n}}=\frac{\mathrm{1}}{{l}}=\frac{-\mathrm{t}}{\mathrm{m}} \\ $$$$\mathrm{t}^{\mathrm{2}} =\frac{\mathrm{n}}{\mathrm{a}{l}}\:\:\:\:\:\:\:−{t}=\frac{{m}}{{l}} \\ $$$${ln}={am}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com