Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50158 by cesar.marval.larez@gmail.com last updated on 14/Dec/18

Commented by cesar.marval.larez@gmail.com last updated on 14/Dec/18

i am practicing very hard

iampracticingveryhard

Answered by afachri last updated on 14/Dec/18

(4)   ∫  ((2x^2  + 8x + 6)/(x − 3)) dx  =   ....  let   x − 3  =  u      ⇒      dx  =  du                      x  =  u + 3  then  subtitute to eq ;  ∫  ((2(u + 3)^2  +  8(u + 3)  + 6 )/u)  du  =  ∫  ((2u^2  + 20u + 48)/u)                                                                                   =  ∫  2u + 20 + ((48)/u)    du                                                                                     =  u^2   +  20u  +  48 ln u + C                                                                                   =  (x−3)^2   +  20(x−3)  +  48 ln(x−3) + C                                                                                   =  x^2 +  14x − 51 + 48 ln (x−3) + C

(4)2x2+8x+6x3dx=....letx3=udx=dux=u+3thensubtitutetoeq;2(u+3)2+8(u+3)+6udu=2u2+20u+48u=2u+20+48udu=u2+20u+48lnu+C=(x3)2+20(x3)+48ln(x3)+C=x2+14x51+48ln(x3)+C

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Dec/18

4)∫((2x^2 +3x+6)/(x−3))dx  t=x−3   ∫((2(t+3)^2 +3(t+3)+6)/t)dt  ∫((2t^2 +12t+18+3t+9+6)/t)dt  ∫((2t^2 +15t+33)/t)dt  2∫tdt+15∫dt+33∫(dt/t)  t^2 +15t+33lnt+c  (x−3)^2 +15(x−3)+33ln(x−3)+c

4)2x2+3x+6x3dxt=x32(t+3)2+3(t+3)+6tdt2t2+12t+18+3t+9+6tdt2t2+15t+33tdt2tdt+15dt+33dttt2+15t+33lnt+c(x3)2+15(x3)+33ln(x3)+c

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Dec/18

5)∫cos^4 6x(−6sin6x)dx  t=cos6x   dt=−6sin6xdx  ∫t^4 dt  (t^5 /5)+c      (((cos6x)^5 )/5)+c

5)cos46x(6sin6x)dxt=cos6xdt=6sin6xdxt4dtt55+c(cos6x)55+c

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Dec/18

6)∫sin^3 xdx  ∫(1−cos^2 x)sinxdx  t=cosx   dt=−sinxdx  ∫(1−t^2 )×−dt  =(−1)(t−(t^3 /3))+c  =(t^3 /3)−t+c  =(((cosx)^3 )/3)−cosx+c

6)sin3xdx(1cos2x)sinxdxt=cosxdt=sinxdx(1t2)×dt=(1)(tt33)+c=t33t+c=(cosx)33cosx+c

Commented by cesar.marval.larez@gmail.com last updated on 14/Dec/18

my friend is sen^3 ax

myfriendissen3ax

Commented by afachri last updated on 14/Dec/18

you can solve it over and do like  Mr Chaudri did. and the result   is :    (((cos^3 (ax) − 3cos (ax))/(3a))) + C   not too far                                                                               isn′t it ??  don′t be doubt to try my friend.

youcansolveitoveranddolikeMrChaudridid.andtheresultis:(cos3(ax)3cos(ax)3a)+Cnottoofarisntit??dontbedoubttotrymyfriend.

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Dec/18

∫cos^2 (x/2)dx  ∫((1+cosx)/2)dx  (1/2)∫(1+cosx)dx  =(1/2)(x+sinx)+c

cos2x2dx1+cosx2dx12(1+cosx)dx=12(x+sinx)+c

Commented by cesar.marval.larez@gmail.com last updated on 14/Dec/18

I knew this but i was not secure  thank u sir haha

Iknewthisbutiwasnotsecurethankusirhaha

Answered by afachri last updated on 15/Dec/18

(9)  ∫  5x . e^((4x)/5) dx  =   ...  Can be solved with partial integral  ;  ∫  u  dv   =   uv  − ∫ v  du    let     u  =  5x              ⇒    du  =  5 dx           dv  =  e^((4x)/5)  dx      ⇒      v    =  (5/4) e^((4x)/5)    so    uv  −  ∫ v  du  =   (5x .  (5/4) e^((4x)/5) )  −  ∫  (5/4) e^((4x)/5)  (5 dx)                                              =  ((25x)/4) e^((4x)/5)   −  (((5×5)/(4×4)) e^((4x)/5) . 5)  + C                                              =  ((25 e^((4x)/5) )/4) ( x − (5/4))  +  C

(9)5x.e4x5dx=...Canbesolvedwithpartialintegral;udv=uvvduletu=5xdu=5dxdv=e4x5dxv=54e4x5souvvdu=(5x.54e4x5)54e4x5(5dx)=25x4e4x5(5×54×4e4x5.5)+C=25e4x54(x54)+C

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Dec/18

7)∫2x^3 e^(−(x/3)) dx  2x^3 ∫e^(−(x/3)) dx−∫[(d/dx)(2x^3 )∫e^(−(x/3)) dx]dx  =2x^3 ×(e^((−x)/3) /((−1)/3))−∫6x^2 ×(e^(−(x/3)) /((−1)/3))dx  =−6x^3 e^((−x)/3) +18I_2   I_2 =∫x^2 e^((−x)/3) dx  =x^2 ×(e^((−x)/3) /((−1)/3))−∫[(dx^2 /dx)∫e^((−x)/3) dx]dx  =−3x^2 e^((−x)/3) −∫2x×(e^((−x)/3) /((−1)/3))dx  =−3x^2 e^((−x)/3) +6∫xe^((−x)/3) dx  =−3x^2 e^((−x)/3) +6I_3   I_3 =∫xe^((−x)/3)  dx  =x×(e^(−(x/3)) /((−1)/3))−∫[(dx/dx)∫e^((−x)/3) dx]dx  =((−3xe^((−x)/3) )/1)−∫(e^((−x)/3) /((−1)/3))dx  =((−3xe^((−x)/3) )/1)+3×(e^((−x)/3) /((−1)/3))+C  =−3xe^((−x)/3) −9e^(−(x/3)) +C  pls do rest by putting I_2 and I_3

7)2x3ex3dx2x3ex3dx[ddx(2x3)ex3dx]dx=2x3×ex3136x2×ex313dx=6x3ex3+18I2I2=x2ex3dx=x2×ex313[dx2dxex3dx]dx=3x2ex32x×ex313dx=3x2ex3+6xex3dx=3x2ex3+6I3I3=xex3dx=x×ex313[dxdxex3dx]dx=3xex31ex313dx=3xex31+3×ex313+C=3xex39ex3+CplsdorestbyputtingI2andI3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com