Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 50330 by peter frank last updated on 15/Dec/18

Commented by peter frank last updated on 15/Dec/18

Answered by mr W last updated on 16/Dec/18

a=mass of ball  b=acceleration of ball  ab=ag−R=ag−k^2 agv^2   ⇒b=g(1−k^2 v^2 )  since b=(dv/dt)  ⇒(dv/dt)=g(1−k^2 v^2 )  ⇒(dv/(1−(kv)^2 ))=gdt  ∫_0 ^v ((d(kv))/(1−(kv)^2 ))=kg∫_0 ^t dt  ⇒(1/2)[ln ((1+kv)/(1−kv))]_0 ^v =kgt  ⇒(1/2)ln ((1+kv)/(1−kv))=kgt  ⇒((1+kv)/(1−kv))=e^(2kgt) =λ, say  ⇒1+kv=λ−λkv  ⇒(1+λ)kv=λ−1  ⇒v=(1/k)(((λ−1)/(λ+1)))  ⇒v=(1/k)(((e^(2gkt) −1)/(e^(2gkt) +1))) =((e^(20kt) −1)/(k(e^(20kt) +1)))  or  ⇒v=(1/k)(1−(2/(1+e^(2gkt) )))    ⇒lim_(t→∞) v=(1/k)(1−(2/(1+∞)))=(1/k)  ⇒limit velocity is (1/k)    at t=(1/2):  v=(1/(1/(10)))(1−(2/(1+e^(20×(1/(10))×(1/2)) )))=10(1−(2/(1+e)))≈4.621 m/s

$${a}={mass}\:{of}\:{ball} \\ $$$${b}={acceleration}\:{of}\:{ball} \\ $$$${ab}={ag}−{R}={ag}−{k}^{\mathrm{2}} {agv}^{\mathrm{2}} \\ $$$$\Rightarrow{b}={g}\left(\mathrm{1}−{k}^{\mathrm{2}} {v}^{\mathrm{2}} \right) \\ $$$${since}\:{b}=\frac{{dv}}{{dt}} \\ $$$$\Rightarrow\frac{{dv}}{{dt}}={g}\left(\mathrm{1}−{k}^{\mathrm{2}} {v}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\frac{{dv}}{\mathrm{1}−\left({kv}\right)^{\mathrm{2}} }={gdt} \\ $$$$\int_{\mathrm{0}} ^{{v}} \frac{{d}\left({kv}\right)}{\mathrm{1}−\left({kv}\right)^{\mathrm{2}} }={kg}\int_{\mathrm{0}} ^{{t}} {dt} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{ln}\:\frac{\mathrm{1}+{kv}}{\mathrm{1}−{kv}}\right]_{\mathrm{0}} ^{{v}} ={kgt} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{1}+{kv}}{\mathrm{1}−{kv}}={kgt} \\ $$$$\Rightarrow\frac{\mathrm{1}+{kv}}{\mathrm{1}−{kv}}={e}^{\mathrm{2}{kgt}} =\lambda,\:{say} \\ $$$$\Rightarrow\mathrm{1}+{kv}=\lambda−\lambda{kv} \\ $$$$\Rightarrow\left(\mathrm{1}+\lambda\right){kv}=\lambda−\mathrm{1} \\ $$$$\Rightarrow{v}=\frac{\mathrm{1}}{{k}}\left(\frac{\lambda−\mathrm{1}}{\lambda+\mathrm{1}}\right) \\ $$$$\Rightarrow{v}=\frac{\mathrm{1}}{{k}}\left(\frac{{e}^{\mathrm{2}{gkt}} −\mathrm{1}}{{e}^{\mathrm{2}{gkt}} +\mathrm{1}}\right)\:=\frac{{e}^{\mathrm{20}{kt}} −\mathrm{1}}{{k}\left({e}^{\mathrm{20}{kt}} +\mathrm{1}\right)} \\ $$$${or} \\ $$$$\Rightarrow{v}=\frac{\mathrm{1}}{{k}}\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}+{e}^{\mathrm{2}{gkt}} }\right) \\ $$$$ \\ $$$$\Rightarrow\underset{{t}\rightarrow\infty} {\mathrm{lim}}{v}=\frac{\mathrm{1}}{{k}}\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}+\infty}\right)=\frac{\mathrm{1}}{{k}} \\ $$$$\Rightarrow{limit}\:{velocity}\:{is}\:\frac{\mathrm{1}}{{k}} \\ $$$$ \\ $$$${at}\:{t}=\frac{\mathrm{1}}{\mathrm{2}}: \\ $$$${v}=\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{10}}}\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}+{e}^{\mathrm{20}×\frac{\mathrm{1}}{\mathrm{10}}×\frac{\mathrm{1}}{\mathrm{2}}} }\right)=\mathrm{10}\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}+{e}}\right)\approx\mathrm{4}.\mathrm{621}\:{m}/{s} \\ $$

Commented by peter frank last updated on 16/Dec/18

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com