Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50412 by Abdo msup. last updated on 16/Dec/18

1) calculate U_n =∫_0 ^π   (dx/(1+cos^2 (nx))) with n from N  2) f continue from [0,π] to R  find  lim_(n→+∞)  ∫_0 ^π    ((f(x))/(1+cos^2 (nx)))dx

1)calculateUn=0πdx1+cos2(nx)withnfromN2)fcontinuefrom[0,π]toRfindlimn+0πf(x)1+cos2(nx)dx

Commented by Abdo msup. last updated on 25/Dec/18

1)changement nx=t give  U_n =(1/n)∫_0 ^(nπ)   (1/(1+cos^2 t))dt ⇒nU_n =Σ_(k=0) ^(n−1)  ∫_(kπ) ^((k+1)π)  (dt/(1+cos^2 t))  but ∫_(kπ) ^((k+1)π)   (dt/(1+cos^2 t)) =_(t=kπ +x)    ∫_0 ^π     (dx/(1+cos^2 x))  = ∫_0 ^π    (dx/(1+((1+cos(2x))/2))) =∫_0 ^π   ((2dx)/(3+cos(2x)))  =_(2x=u)   ∫_0 ^(2π)     (du/(3+cosu)) du   ⇒nU_n =n ∫_0 ^(2π)    (du/(3+cosu))  ⇒U_n =∫_0 ^(2π)    (du/(3+cos(u)))  changement e^(iu) =z give  U_n = ∫_(∣z∣=1)     (1/(3+((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)     ((2dz)/(iz(6+z +z^(−1) )))  =∫_(∣z∣=1)     ((−2idz)/(6z +z^2  +1))  let ϕ(z)=((−2i)/(z^2  +6z +1))  poles of ϕ?  Δ^′ =3^2 −1=8 ⇒z_1 =−3+2(√2)  and z_2 =−3−2(√2)  ∣z_1 ∣−1 =3−2(√2)−1 =2−2(√2)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1 =3+2(√2)−1=2+2(√2)( z_2 is out of circle)  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 )   Res(ϕ,z_1 ) = ((−2i)/(z_1 −z_2 )) =((−2i)/(4(√2))) =((−i)/(2(√2))) ⇒  ∫_(∣z∣=1)  ϕ(z)dz =2iπ(((−i)/(2(√2))))=(π/(√2))  ⇒ ∀n∈N   U_n =(π/(√2)) .

1)changementnx=tgiveUn=1n0nπ11+cos2tdtnUn=k=0n1kπ(k+1)πdt1+cos2tbutkπ(k+1)πdt1+cos2t=t=kπ+x0πdx1+cos2x=0πdx1+1+cos(2x)2=0π2dx3+cos(2x)=2x=u02πdu3+cosudunUn=n02πdu3+cosuUn=02πdu3+cos(u)changementeiu=zgiveUn=z∣=113+z+z12dziz=z∣=12dziz(6+z+z1)=z∣=12idz6z+z2+1letφ(z)=2iz2+6z+1polesofφ?Δ=321=8z1=3+22andz2=322z11=3221=222<0⇒∣z1∣<1z21=3+221=2+22(z2isoutofcircle)z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=2iz1z2=2i42=i22z∣=1φ(z)dz=2iπ(i22)=π2nNUn=π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com