All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 50412 by Abdo msup. last updated on 16/Dec/18
1)calculateUn=∫0πdx1+cos2(nx)withnfromN2)fcontinuefrom[0,π]toRfindlimn→+∞∫0πf(x)1+cos2(nx)dx
Commented by Abdo msup. last updated on 25/Dec/18
1)changementnx=tgiveUn=1n∫0nπ11+cos2tdt⇒nUn=∑k=0n−1∫kπ(k+1)πdt1+cos2tbut∫kπ(k+1)πdt1+cos2t=t=kπ+x∫0πdx1+cos2x=∫0πdx1+1+cos(2x)2=∫0π2dx3+cos(2x)=2x=u∫02πdu3+cosudu⇒nUn=n∫02πdu3+cosu⇒Un=∫02πdu3+cos(u)changementeiu=zgiveUn=∫∣z∣=113+z+z−12dziz=∫∣z∣=12dziz(6+z+z−1)=∫∣z∣=1−2idz6z+z2+1letφ(z)=−2iz2+6z+1polesofφ?Δ′=32−1=8⇒z1=−3+22andz2=−3−22∣z1∣−1=3−22−1=2−22<0⇒∣z1∣<1∣z2∣−1=3+22−1=2+22(z2isoutofcircle)∫∣z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=−2iz1−z2=−2i42=−i22⇒∫∣z∣=1φ(z)dz=2iπ(−i22)=π2⇒∀n∈NUn=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com