Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50413 by Abdo msup. last updated on 16/Dec/18

let f ∈C^0 (R,R) / ∀ x∈R  f(a+b−x)=f(x)  1) find ∫_a ^b xf(x)dx interms of ∫_a ^b f(x)dx  2) calculate ∫_0 ^π   ((xdx)/(1+sinx))

letfC0(R,R)/xRf(a+bx)=f(x)1)findabxf(x)dxintermsofabf(x)dx2)calculate0πxdx1+sinx

Commented by Abdo msup. last updated on 24/Dec/18

1)∫_a ^b xf(x)dx =∫_a ^b xf(a+b−x)dx   =_(a+b−x=t )     −∫_b ^a  (a+b−t)f(t)dt  =∫_a ^b (a+b)f(t) −∫_a ^b tf(t)dt ⇒  2 ∫_a ^b  xf(x)dx =(a+b)∫_a ^b  f(t)dt ⇒  ∫_a ^b  xf(x)dx =((a+b)/2) ∫_a ^b  f(x)dx  2) we have ∫_0 ^π  ((xdx)/(1+sinx)) =∫_0 ^π  xf(x)dx with  f(x)=(1/(1+sinx))  we have f(0+π−x)=(1/(1+sin(π−x)))  =f(x) ⇒∫_0 ^π  xf(x)dx =(π/2) ∫_0 ^π   (dx/(1+sinx))  =_(tan((x/2))=t)   (π/2) ∫_0 ^∞   (1/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  =π ∫_0 ^∞    (dt/(1+t^2  +2t)) =π ∫_0 ^∞   (dt/((t+1)^2 ))  =π [−(1/(t+1))]_0 ^(+∞)  = π  .

1)abxf(x)dx=abxf(a+bx)dx=a+bx=tba(a+bt)f(t)dt=ab(a+b)f(t)abtf(t)dt2abxf(x)dx=(a+b)abf(t)dtabxf(x)dx=a+b2abf(x)dx2)wehave0πxdx1+sinx=0πxf(x)dxwithf(x)=11+sinxwehavef(0+πx)=11+sin(πx)=f(x)0πxf(x)dx=π20πdx1+sinx=tan(x2)=tπ2011+2t1+t22dt1+t2=π0dt1+t2+2t=π0dt(t+1)2=π[1t+1]0+=π.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com