All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 50413 by Abdo msup. last updated on 16/Dec/18
letf∈C0(R,R)/∀x∈Rf(a+b−x)=f(x)1)find∫abxf(x)dxintermsof∫abf(x)dx2)calculate∫0πxdx1+sinx
Commented by Abdo msup. last updated on 24/Dec/18
1)∫abxf(x)dx=∫abxf(a+b−x)dx=a+b−x=t−∫ba(a+b−t)f(t)dt=∫ab(a+b)f(t)−∫abtf(t)dt⇒2∫abxf(x)dx=(a+b)∫abf(t)dt⇒∫abxf(x)dx=a+b2∫abf(x)dx2)wehave∫0πxdx1+sinx=∫0πxf(x)dxwithf(x)=11+sinxwehavef(0+π−x)=11+sin(π−x)=f(x)⇒∫0πxf(x)dx=π2∫0πdx1+sinx=tan(x2)=tπ2∫0∞11+2t1+t22dt1+t2=π∫0∞dt1+t2+2t=π∫0∞dt(t+1)2=π[−1t+1]0+∞=π.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com