Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50422 by Abdo msup. last updated on 16/Dec/18

find ∫_0 ^1   ((ln(x))/((√x)(1−x)^(3/2) ))dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\sqrt{{x}}\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$

Commented by Abdo msup. last updated on 23/Dec/18

changement x =sin^2 θ give  ∫_0 ^1   ((ln(x))/((√x)(1−x)^(3/2) ))dx =∫_0 ^(π/2)    ((2ln(sinθ))/(sinθ(cos^2 θ)^(3/2) )) 2sinθ cosθ dθ  =4∫_0 ^(π/2)     ((ln(sinθ))/(cos^2 θ)) dθ  by psrts u^′ =(1/(cos^2 θ)) and v=ln(sinθ)  =4 {  [tanθ ln(sinθ)]_0 ^(π/2)  −∫_0 ^(π/2)  tanθ  ((cosθ)/(sinθ))dθ}  =−4 ∫_0 ^(π/2) dθ =−2π .rest to prove that  lim_(θ→0) tanθ ln(sinθ)=0 and lim_(θ→(π/2))  tanθ ln(sinθ)=0  for x∈v(0)  tanθ∼ θ   ,ln(sinθ)∼ln(θ) ⇒  tanθ ln(sinθ)∼θ lnθ →0 (θ→0)   ch. θ =(π/2)−t give tanθ ln(sinθ) =tan((π/2)−t)ln(cost)  =((ln(cost))/(tan(t))) but  cost ∼ 1−(t^2 /2)  and ln(cost)∼−(t^2 /2)  tan(t)∼ t ⇒((ln(cost))/(tan(t))) ∼ −(t/2) →0(t→0) ⇒the result  is proved.

$${changement}\:{x}\:={sin}^{\mathrm{2}} \theta\:{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({x}\right)}{\sqrt{{x}}\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{\mathrm{2}{ln}\left({sin}\theta\right)}{{sin}\theta\left({cos}^{\mathrm{2}} \theta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\mathrm{2}{sin}\theta\:{cos}\theta\:{d}\theta \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{ln}\left({sin}\theta\right)}{{cos}^{\mathrm{2}} \theta}\:{d}\theta\:\:{by}\:{psrts}\:{u}^{'} =\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}\:{and}\:{v}={ln}\left({sin}\theta\right) \\ $$$$=\mathrm{4}\:\left\{\:\:\left[{tan}\theta\:{ln}\left({sin}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{tan}\theta\:\:\frac{{cos}\theta}{{sin}\theta}{d}\theta\right\} \\ $$$$=−\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {d}\theta\:=−\mathrm{2}\pi\:.{rest}\:{to}\:{prove}\:{that} \\ $$$${lim}_{\theta\rightarrow\mathrm{0}} {tan}\theta\:{ln}\left({sin}\theta\right)=\mathrm{0}\:{and}\:{lim}_{\theta\rightarrow\frac{\pi}{\mathrm{2}}} \:{tan}\theta\:{ln}\left({sin}\theta\right)=\mathrm{0} \\ $$$${for}\:{x}\in{v}\left(\mathrm{0}\right)\:\:{tan}\theta\sim\:\theta\:\:\:,{ln}\left({sin}\theta\right)\sim{ln}\left(\theta\right)\:\Rightarrow \\ $$$${tan}\theta\:{ln}\left({sin}\theta\right)\sim\theta\:{ln}\theta\:\rightarrow\mathrm{0}\:\left(\theta\rightarrow\mathrm{0}\right) \\ $$$$\:{ch}.\:\theta\:=\frac{\pi}{\mathrm{2}}−{t}\:{give}\:{tan}\theta\:{ln}\left({sin}\theta\right)\:={tan}\left(\frac{\pi}{\mathrm{2}}−{t}\right){ln}\left({cost}\right) \\ $$$$=\frac{{ln}\left({cost}\right)}{{tan}\left({t}\right)}\:{but}\:\:{cost}\:\sim\:\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\:\:{and}\:{ln}\left({cost}\right)\sim−\frac{{t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${tan}\left({t}\right)\sim\:{t}\:\Rightarrow\frac{{ln}\left({cost}\right)}{{tan}\left({t}\right)}\:\sim\:−\frac{{t}}{\mathrm{2}}\:\rightarrow\mathrm{0}\left({t}\rightarrow\mathrm{0}\right)\:\Rightarrow{the}\:{result} \\ $$$${is}\:{proved}. \\ $$

Answered by Smail last updated on 27/Dec/18

by parts  u=lnx⇒u′=(1/x)  v′=(1/((√x)(1−x)^(3/2) ))⇒v=((2(√x))/(√(1−x)))  I=∫_0 ^1 ((lnx)/((√x)(1−x)^(3/2) ))dx=2[(((√x)lnx)/(√(1−x)))]_0 ^1 −2∫_0 ^1 (dx/((√x)(√(1−x))))  let t^2 =x⇒2tdt=dx  I=0−4∫_0 ^1 ((tdt)/(t(√(1−t^2 ))))  =−4[sin^(−1) t]_0 ^1 =−4((π/2)+2kπ−kπ)  =−4((π/2)+kπ)

$${by}\:{parts} \\ $$$${u}={lnx}\Rightarrow{u}'=\frac{\mathrm{1}}{{x}} \\ $$$${v}'=\frac{\mathrm{1}}{\sqrt{{x}}\left(\mathrm{1}−{x}\right)^{\mathrm{3}/\mathrm{2}} }\Rightarrow{v}=\frac{\mathrm{2}\sqrt{{x}}}{\sqrt{\mathrm{1}−{x}}} \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\sqrt{{x}}\left(\mathrm{1}−{x}\right)^{\mathrm{3}/\mathrm{2}} }{dx}=\mathrm{2}\left[\frac{\sqrt{{x}}{lnx}}{\sqrt{\mathrm{1}−{x}}}\right]_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\sqrt{{x}}\sqrt{\mathrm{1}−{x}}} \\ $$$${let}\:{t}^{\mathrm{2}} ={x}\Rightarrow\mathrm{2}{tdt}={dx} \\ $$$${I}=\mathrm{0}−\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tdt}}{{t}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }} \\ $$$$=−\mathrm{4}\left[{sin}^{−\mathrm{1}} {t}\right]_{\mathrm{0}} ^{\mathrm{1}} =−\mathrm{4}\left(\frac{\pi}{\mathrm{2}}+\mathrm{2}{k}\pi−{k}\pi\right) \\ $$$$=−\mathrm{4}\left(\frac{\pi}{\mathrm{2}}+{k}\pi\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com