Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 5056 by Rasheed Soomro last updated on 06/Apr/16

x≠y ∧ y≠0 ∧ log_(x/y) ((x^2 /y^3 ))=?

$${x}\neq{y}\:\wedge\:{y}\neq\mathrm{0}\:\wedge\:\mathrm{log}_{\frac{\mathrm{x}}{\mathrm{y}}} \left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}^{\mathrm{3}} }\right)=? \\ $$

Commented by Yozzii last updated on 06/Apr/16

log_(x/y) x^2 /y^3 =2−((lny)/(lnx−lny))=2−(1/(log_y x−1))  Let u=x/y⇒log_u u^2 y^(−1) =2−log_u y  log_(x/y) x^2 /y^3 =2−log_(x/y) y  =2−((lny)/(ln(x/y)))  =2−((lny)/(lnx−lny))  =2−(1/(((lnx)/(lny))−1))  =2−(1/(log_y x−1))  =2+(1/(1−log_y x))  log_(x/y) x^2 /y^3 =2+Σ_(r=0) ^∞ log_y ^r x  ⇔ ∣log_y x∣<1⇒−1<log_y x<1  y^(−1) <x<y  or x∈((1/y),y)

$${log}_{{x}/{y}} {x}^{\mathrm{2}} /{y}^{\mathrm{3}} =\mathrm{2}−\frac{{lny}}{{lnx}−{lny}}=\mathrm{2}−\frac{\mathrm{1}}{{log}_{{y}} {x}−\mathrm{1}} \\ $$$${Let}\:{u}={x}/{y}\Rightarrow{log}_{{u}} {u}^{\mathrm{2}} {y}^{−\mathrm{1}} =\mathrm{2}−{log}_{{u}} {y} \\ $$$${log}_{{x}/{y}} {x}^{\mathrm{2}} /{y}^{\mathrm{3}} =\mathrm{2}−{log}_{{x}/{y}} {y} \\ $$$$=\mathrm{2}−\frac{{lny}}{{ln}\left({x}/{y}\right)} \\ $$$$=\mathrm{2}−\frac{{lny}}{{lnx}−{lny}} \\ $$$$=\mathrm{2}−\frac{\mathrm{1}}{\frac{{lnx}}{{lny}}−\mathrm{1}} \\ $$$$=\mathrm{2}−\frac{\mathrm{1}}{{log}_{{y}} {x}−\mathrm{1}} \\ $$$$=\mathrm{2}+\frac{\mathrm{1}}{\mathrm{1}−{log}_{{y}} {x}} \\ $$$${log}_{{x}/{y}} {x}^{\mathrm{2}} /{y}^{\mathrm{3}} =\mathrm{2}+\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}{log}_{{y}} ^{{r}} {x} \\ $$$$\Leftrightarrow\:\mid{log}_{{y}} {x}\mid<\mathrm{1}\Rightarrow−\mathrm{1}<{log}_{{y}} {x}<\mathrm{1} \\ $$$${y}^{−\mathrm{1}} <{x}<{y}\:\:{or}\:{x}\in\left(\frac{\mathrm{1}}{{y}},{y}\right) \\ $$

Commented by Rasheed Soomro last updated on 07/Apr/16

log_(x/y) x^2 /y^3 =2+Σ_(r=0) ^∞ log_y ^r x [ Didn′t understand,how?]

$${log}_{{x}/{y}} {x}^{\mathrm{2}} /{y}^{\mathrm{3}} =\mathrm{2}+\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}{log}_{{y}} ^{{r}} {x}\:\left[\:{Didn}'{t}\:{understand},{how}?\right] \\ $$

Commented by Yozzii last updated on 07/Apr/16

If ∣log_y x∣<1 then we can write  (1/(1−log_y x))=1+log_y x+log_y ^2 x+log_y ^3 x+log_y ^4 x+...  or (1/(1−log_y x))=Σ_(r=0) ^∞ log_y ^r x.

$${If}\:\mid{log}_{{y}} {x}\mid<\mathrm{1}\:{then}\:{we}\:{can}\:{write} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{log}_{{y}} {x}}=\mathrm{1}+{log}_{{y}} {x}+{log}_{{y}} ^{\mathrm{2}} {x}+{log}_{{y}} ^{\mathrm{3}} {x}+{log}_{{y}} ^{\mathrm{4}} {x}+... \\ $$$${or}\:\frac{\mathrm{1}}{\mathrm{1}−{log}_{{y}} {x}}=\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}{log}_{{y}} ^{{r}} {x}. \\ $$

Commented by Rasheed Soomro last updated on 07/Apr/16

Th𝛂nkS!

$$\mathbb{T}\boldsymbol{\mathrm{h}\alpha\mathrm{n}}\Bbbk\boldsymbol{\mathrm{S}}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com