Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 5058 by Yozzii last updated on 06/Apr/16

∫∫(a/((1−lnx)(lny−1)))dxdy=?

$$\int\int\frac{{a}}{\left(\mathrm{1}−{lnx}\right)\left({lny}−\mathrm{1}\right)}{dxdy}=? \\ $$

Commented by Yozzii last updated on 06/Apr/16

∫∫∫∫...∫∫∫(a/(Π_(i=1) ^n (1−lnx_i )))dx_1 dx_2 ...dx_n =?

$$\int\int\int\int...\int\int\int\frac{{a}}{\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}−{lnx}_{{i}} \right)}{dx}_{\mathrm{1}} {dx}_{\mathrm{2}} ...{dx}_{{n}} =? \\ $$

Commented by prakash jain last updated on 07/Apr/16

=∫(1/(1−ln x))dx∙∫(1/(1−ln y))dy  I don′t think ∫(1/(1−ln x))dx can be expressed  in terms of elementry functions.

$$=\int\frac{\mathrm{1}}{\mathrm{1}−\mathrm{ln}\:{x}}\mathrm{d}{x}\centerdot\int\frac{\mathrm{1}}{\mathrm{1}−\mathrm{ln}\:{y}}\mathrm{d}{y} \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\int\frac{\mathrm{1}}{\mathrm{1}−\mathrm{ln}\:{x}}\mathrm{d}{x}\:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{elementry}\:\mathrm{functions}. \\ $$

Commented by Yozzii last updated on 07/Apr/16

Wolfram alpha defines the En function  for n=1 as E_1 (x)=∫_1 ^∞ (e^(−tx) /t)dt=∫_x ^∞ (e^(−u) /u)du. Now, define the  exponential integral Ei(x) such that  E_1 (x)=−Ei(−x). Then  Ei(x)=−∫_(−x) ^∞ (e^(−t) /t)dt.  Let u=1−lnx⇒du=−x^(−1) dx  x=e^(1−u) ⇒−e^(1−u) du=dx.  ∫(dx/(1−lnx))=∫((−e^(1−u) du)/u)=−e∫(e^(−u) /u)du  ∫(dx/(1−lnx))=eEi(u)+c=eEi(−(−u))+c=−eE_1 (−u)+c=−eE_1 (lnx−1)+c.  I′m not certain whether or not   I′m using this definition correctly.

$${Wolfram}\:{alpha}\:{defines}\:{the}\:{En}\:{function} \\ $$$${for}\:{n}=\mathrm{1}\:{as}\:{E}_{\mathrm{1}} \left({x}\right)=\overset{\infty} {\int}_{\mathrm{1}} \frac{{e}^{−{tx}} }{{t}}{dt}=\int_{{x}} ^{\infty} \frac{{e}^{−{u}} }{{u}}{du}.\:{Now},\:{define}\:{the} \\ $$$${exponential}\:{integral}\:{Ei}\left({x}\right)\:{such}\:{that} \\ $$$${E}_{\mathrm{1}} \left({x}\right)=−{Ei}\left(−{x}\right).\:{Then} \\ $$$${Ei}\left({x}\right)=−\int_{−{x}} ^{\infty} \frac{{e}^{−{t}} }{{t}}{dt}. \\ $$$${Let}\:{u}=\mathrm{1}−{lnx}\Rightarrow{du}=−{x}^{−\mathrm{1}} {dx} \\ $$$${x}={e}^{\mathrm{1}−{u}} \Rightarrow−{e}^{\mathrm{1}−{u}} {du}={dx}. \\ $$$$\int\frac{{dx}}{\mathrm{1}−{lnx}}=\int\frac{−{e}^{\mathrm{1}−{u}} {du}}{{u}}=−{e}\int\frac{{e}^{−{u}} }{{u}}{du} \\ $$$$\int\frac{{dx}}{\mathrm{1}−{lnx}}={eEi}\left({u}\right)+{c}={eEi}\left(−\left(−{u}\right)\right)+{c}=−{eE}_{\mathrm{1}} \left(−{u}\right)+{c}=−{eE}_{\mathrm{1}} \left({lnx}−\mathrm{1}\right)+{c}. \\ $$$${I}'{m}\:{not}\:{certain}\:{whether}\:{or}\:{not}\: \\ $$$${I}'{m}\:{using}\:{this}\:{definition}\:{correctly}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com