Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 50638 by ajfour last updated on 18/Dec/18

Commented by ajfour last updated on 18/Dec/18

Determine (a/b) for ellipse if α = 45° .

$${Determine}\:\frac{{a}}{{b}}\:{for}\:{ellipse}\:{if}\:\alpha\:=\:\mathrm{45}°\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Dec/18

eqn normal y=xtanα  eqn ellipse  (((x−0)^2 )/a^2 )+(((y−b)^2 )/b^2 )=1  acosθ,b+bsinθ lies on normal  so  b+bsinθ=acosθtanα  b^2 x^2 +a^2 (y^2 −2yb+b^2 )=a^2 b^2   b^2 x^2 +a^2 y^2 −2a^2 by+a^2 b^2 =a^2 b^2   eqn tangent  b^2 x(acosθ)+a^2 y(b+bsinθ)−a^2 b(y+b+bsinθ)=0  x(ab^2 cosθ)+y(a^2 b+a^2 bsinθ−a^2 b)=a^2 b(b+bsinθ)  slope=m=((−ab^2 cosθ)/(a^2 bsinθ))=−(b/a)cotθ←slope of tangent  slope of normal=(a/(bcotθ))  tanα=(a/(bcotθ))  l=(√((acosθ)^2 +(b+bsinθ)^2 )) =(√(a^2 cos^2 θ+b^2 +2b^2 sinθ+b^2 sin^2 θ))   lcosα=acosθ  lsinα=b+binθ    tanα=((b+bsinθ)/(acosθ))=(a/(bcotθ))  ((b+bsinθ)/a)=((asinθ)/b)  a^2 sinθ=b^2 +b^2 sinθ  sinθ=(b^2 /(a^2 −b^2 ))  cotθ=((base)/(perpendicular))=((√((a^2 −b^2 )^2 −b^4 ))/b^2 )  cotθ=((√(a^4 −2a^2 b^2 ))/b^2 )  now tanα=(a/(bcotθ))=(a/b)×(b^2 /(√(a^4 −2a^2 b^2 )))  tanα=(a/b)×(b^2 /a)×(1/(√(a^2 −2b^2 )))=(b/(b(√(((a/b))^2 −2))))  tanα=(1/(√(((a/b))^2 −2)))  given α=(π/4)  (√(((a/b))^2 −2)) =1  ((a/b))^2 =3   so (a/b)=(√3)  pls check...

$${eqn}\:{normal}\:{y}={xtan}\alpha \\ $$$${eqn}\:{ellipse} \\ $$$$\frac{\left({x}−\mathrm{0}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}−{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${acos}\theta,{b}+{bsin}\theta\:{lies}\:{on}\:{normal} \\ $$$${so} \\ $$$${b}+{bsin}\theta={acos}\theta{tan}\alpha \\ $$$${b}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} \left({y}^{\mathrm{2}} −\mathrm{2}{yb}+{b}^{\mathrm{2}} \right)={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {by}+{a}^{\mathrm{2}} {b}^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$${eqn}\:{tangent} \\ $$$${b}^{\mathrm{2}} {x}\left({acos}\theta\right)+{a}^{\mathrm{2}} {y}\left({b}+{bsin}\theta\right)−{a}^{\mathrm{2}} {b}\left({y}+{b}+{bsin}\theta\right)=\mathrm{0} \\ $$$${x}\left({ab}^{\mathrm{2}} {cos}\theta\right)+{y}\left({a}^{\mathrm{2}} {b}+{a}^{\mathrm{2}} {bsin}\theta−{a}^{\mathrm{2}} {b}\right)={a}^{\mathrm{2}} {b}\left({b}+{bsin}\theta\right) \\ $$$${slope}={m}=\frac{−{ab}^{\mathrm{2}} {cos}\theta}{{a}^{\mathrm{2}} {bsin}\theta}=−\frac{{b}}{{a}}{cot}\theta\leftarrow{slope}\:{of}\:{tangent} \\ $$$${slope}\:{of}\:{normal}=\frac{{a}}{{bcot}\theta} \\ $$$${tan}\alpha=\frac{{a}}{{bcot}\theta} \\ $$$${l}=\sqrt{\left({acos}\theta\right)^{\mathrm{2}} +\left({b}+{bsin}\theta\right)^{\mathrm{2}} }\:=\sqrt{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} {sin}\theta+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}\: \\ $$$${lcos}\alpha={acos}\theta \\ $$$${lsin}\alpha={b}+{bin}\theta \\ $$$$ \\ $$$${tan}\alpha=\frac{{b}+{bsin}\theta}{{acos}\theta}=\frac{{a}}{{bcot}\theta} \\ $$$$\frac{{b}+{bsin}\theta}{{a}}=\frac{{asin}\theta}{{b}} \\ $$$${a}^{\mathrm{2}} {sin}\theta={b}^{\mathrm{2}} +{b}^{\mathrm{2}} {sin}\theta \\ $$$${sin}\theta=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${cot}\theta=\frac{{base}}{{perpendicular}}=\frac{\sqrt{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} −{b}^{\mathrm{4}} }}{{b}^{\mathrm{2}} } \\ $$$${cot}\theta=\frac{\sqrt{{a}^{\mathrm{4}} −\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }}{{b}^{\mathrm{2}} } \\ $$$${now}\:{tan}\alpha=\frac{{a}}{{bcot}\theta}=\frac{{a}}{{b}}×\frac{{b}^{\mathrm{2}} }{\sqrt{{a}^{\mathrm{4}} −\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }} \\ $$$${tan}\alpha=\frac{{a}}{{b}}×\frac{{b}^{\mathrm{2}} }{{a}}×\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} }}=\frac{{b}}{{b}\sqrt{\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} −\mathrm{2}}} \\ $$$${tan}\alpha=\frac{\mathrm{1}}{\sqrt{\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} −\mathrm{2}}} \\ $$$${given}\:\alpha=\frac{\pi}{\mathrm{4}} \\ $$$$\sqrt{\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} −\mathrm{2}}\:=\mathrm{1} \\ $$$$\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} =\mathrm{3}\:\:\:{so}\:\frac{{a}}{{b}}=\sqrt{\mathrm{3}}\:\:{pls}\:{check}... \\ $$$$ \\ $$

Commented by MJS last updated on 18/Dec/18

I get b=a((√3)/3) ⇒ (a/b)=(√3)

$$\mathrm{I}\:\mathrm{get}\:{b}={a}\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:\Rightarrow\:\frac{{a}}{{b}}=\sqrt{\mathrm{3}} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 18/Dec/18

thank you sir i got the same result...

$${thank}\:{you}\:{sir}\:{i}\:{got}\:{the}\:{same}\:{result}... \\ $$

Answered by mr W last updated on 18/Dec/18

P(h,k)  ⇒k=h  (h^2 /a^2 )+(((h−b)^2 )/b^2 )=1  (h/a^2 )+((h−b)/b^2 )(−1)=0  (h^2 /a^2 )=(((h−b)h)/b^2 )  (((h−b)h)/b^2 )+(((h−b)^2 )/b^2 )=1  ⇒h=((3b)/2)  ((9b^2 )/(4a^2 ))+(b^2 /(4b^2 ))=1  (b^2 /a^2 )=(1/3)  ⇒(b/a)=(1/(√3))≈0.577

$${P}\left({h},{k}\right) \\ $$$$\Rightarrow{k}={h} \\ $$$$\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({h}−{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{h}}{{a}^{\mathrm{2}} }+\frac{{h}−{b}}{{b}^{\mathrm{2}} }\left(−\mathrm{1}\right)=\mathrm{0} \\ $$$$\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\frac{\left({h}−{b}\right){h}}{{b}^{\mathrm{2}} } \\ $$$$\frac{\left({h}−{b}\right){h}}{{b}^{\mathrm{2}} }+\frac{\left({h}−{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{h}=\frac{\mathrm{3}{b}}{\mathrm{2}} \\ $$$$\frac{\mathrm{9}{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{{b}}{{a}}=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\approx\mathrm{0}.\mathrm{577} \\ $$

Commented by mr W last updated on 18/Dec/18

(x^2 /a^2 )+(((y−b)^2 )/b^2 )=1  (x/a^2 )+(((y−b))/b^2 )y′=0  at (h,k): y′=−1  ⇒(h/a^2 )+(((k−b))/b^2 )(−1)=0

$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}−{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{\left({y}−{b}\right)}{{b}^{\mathrm{2}} }{y}'=\mathrm{0} \\ $$$${at}\:\left({h},{k}\right):\:{y}'=−\mathrm{1} \\ $$$$\Rightarrow\frac{{h}}{{a}^{\mathrm{2}} }+\frac{\left({k}−{b}\right)}{{b}^{\mathrm{2}} }\left(−\mathrm{1}\right)=\mathrm{0} \\ $$

Commented by ajfour last updated on 18/Dec/18

Sir please explain  4th line   (h/a^2 )+(((h−b))/b^2 )(−1) = 0

$${Sir}\:{please}\:{explain}\:\:\mathrm{4}{th}\:{line} \\ $$$$\:\frac{{h}}{{a}^{\mathrm{2}} }+\frac{\left({h}−{b}\right)}{{b}^{\mathrm{2}} }\left(−\mathrm{1}\right)\:=\:\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com