Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50659 by rahul 19 last updated on 18/Dec/18

∫_(0 ) ^( ∞)  (dx/(4−x^2 )) = ?

$$\int_{\mathrm{0}\:} ^{\:\infty} \:\frac{{dx}}{\mathrm{4}−{x}^{\mathrm{2}} }\:=\:? \\ $$

Commented by maxmathsup by imad last updated on 18/Dec/18

this integral diverges let prove this  let A_n =∫_0 ^(2+(1/n))    (dx/(4−x^2 ))  we have ∫_0 ^2    (dx/(4−x^2 )) =lim_(n→+∞)  A_n    but  A_n = (1/4) ∫_0 ^(2+(1/n))   ( (1/(2−x)) +(1/(2+x)))dx =(1/4)[ln∣((2+x)/(2−x))∣]_0 ^(2+(1/n))   = (1/4){ln∣ ((4+(1/n))/(−(1/n)))∣} =(1/4)ln(4n+1) ⇒lim_(n→+∞)    A_n =+∞

$${this}\:{integral}\:{diverges}\:{let}\:{prove}\:{this}\:\:{let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{2}+\frac{\mathrm{1}}{{n}}} \:\:\:\frac{{dx}}{\mathrm{4}−{x}^{\mathrm{2}} } \\ $$$${we}\:{have}\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\:\frac{{dx}}{\mathrm{4}−{x}^{\mathrm{2}} }\:={lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \:\:\:{but} \\ $$$${A}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{2}+\frac{\mathrm{1}}{{n}}} \:\:\left(\:\frac{\mathrm{1}}{\mathrm{2}−{x}}\:+\frac{\mathrm{1}}{\mathrm{2}+{x}}\right){dx}\:=\frac{\mathrm{1}}{\mathrm{4}}\left[{ln}\mid\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}\mid\right]_{\mathrm{0}} ^{\mathrm{2}+\frac{\mathrm{1}}{{n}}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\left\{{ln}\mid\:\frac{\mathrm{4}+\frac{\mathrm{1}}{{n}}}{−\frac{\mathrm{1}}{{n}}}\mid\right\}\:=\frac{\mathrm{1}}{\mathrm{4}}{ln}\left(\mathrm{4}{n}+\mathrm{1}\right)\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:\:\:{A}_{{n}} =+\infty \\ $$

Commented by mr W last updated on 18/Dec/18

so we can not say  ∫_(−∞) ^(+∞) (1/x) dx=0 ?

$${so}\:{we}\:{can}\:{not}\:{say} \\ $$$$\int_{−\infty} ^{+\infty} \frac{\mathrm{1}}{{x}}\:{dx}=\mathrm{0}\:? \\ $$

Commented by maxmathsup by imad last updated on 18/Dec/18

this integral is another type because x→(1/x) is odd.

$${this}\:{integral}\:{is}\:{another}\:{type}\:{because}\:{x}\rightarrow\frac{\mathrm{1}}{{x}}\:{is}\:{odd}. \\ $$

Commented by maxmathsup by imad last updated on 18/Dec/18

sir we get a indetermined form  because  ∫_(−∞) ^(+∞)  (dx/x) =∫_(−∞) ^0  (dx/x) +∫_0 ^(+∞)  (dx/x) and ∫_(−∞) ^0  (dx/x) =_(x=−t)   −∫_0 ^(+∞)  ((−dt)/(−t)) =−∫_0 ^∞  (dx/x) ⇒  ∫_(−∞) ^(+∞)   (dx/x) =∫_0 ^∞  (dx/x) −∫_0 ^∞  (dx/x) =+∞−∞   indetermined form!

$${sir}\:{we}\:{get}\:{a}\:{indetermined}\:{form}\:\:{because} \\ $$$$\int_{−\infty} ^{+\infty} \:\frac{{dx}}{{x}}\:=\int_{−\infty} ^{\mathrm{0}} \:\frac{{dx}}{{x}}\:+\int_{\mathrm{0}} ^{+\infty} \:\frac{{dx}}{{x}}\:{and}\:\int_{−\infty} ^{\mathrm{0}} \:\frac{{dx}}{{x}}\:=_{{x}=−{t}} \:\:−\int_{\mathrm{0}} ^{+\infty} \:\frac{−{dt}}{−{t}}\:=−\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{{x}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{{x}}\:−\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{{x}}\:=+\infty−\infty\:\:\:{indetermined}\:{form}! \\ $$

Answered by mr W last updated on 18/Dec/18

∫_(0 ) ^( ∞)  (dx/(2^2 −x^2 ))   =(1/4)[ln ∣((2+x)/(2−x))∣]_0 ^2 +(1/4)[ln ∣((2+x)/(2−x))∣]_2 ^∞   =(1/4)(A)+(1/4)(−A)  =0

$$\int_{\mathrm{0}\:} ^{\:\infty} \:\frac{{dx}}{\mathrm{2}^{\mathrm{2}} −{x}^{\mathrm{2}} }\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\:\mid\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}\mid\right]_{\mathrm{0}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\:\mid\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}\mid\right]_{\mathrm{2}} ^{\infty} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left({A}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(−{A}\right) \\ $$$$=\mathrm{0} \\ $$

Commented by rahul 19 last updated on 18/Dec/18

thanks sir!

Commented by mr W last updated on 18/Dec/18

i am not sure if the answer is correct,  since A→∞. we can not say ∞−∞=0.

$${i}\:{am}\:{not}\:{sure}\:{if}\:{the}\:{answer}\:{is}\:{correct}, \\ $$$${since}\:{A}\rightarrow\infty.\:{we}\:{can}\:{not}\:{say}\:\infty−\infty=\mathrm{0}. \\ $$

Commented by afachri last updated on 18/Dec/18

that is the thing i′m thinking about Mr W.  i was going to ask you, but i was afraid you  don′t want to answer :D

$$\mathrm{that}\:\mathrm{is}\:\mathrm{the}\:\mathrm{thing}\:\mathrm{i}'\mathrm{m}\:\mathrm{thinking}\:\mathrm{about}\:\mathrm{Mr}\:\mathrm{W}. \\ $$$$\mathrm{i}\:\mathrm{was}\:\mathrm{going}\:\mathrm{to}\:\mathrm{ask}\:\mathrm{you},\:\mathrm{but}\:\mathrm{i}\:\mathrm{was}\:\mathrm{afraid}\:\mathrm{you} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{want}\:\mathrm{to}\:\mathrm{answer}\::\mathrm{D} \\ $$

Answered by MJS last updated on 18/Dec/18

∫(dx/(4−x^2 ))=(1/4)(ln ∣x+2∣ −ln ∣x−2∣) +C  this is not defined for x=±2  Cauchy Principal Value:  ∫_0 ^∞ (dx/(4−x^2 ))=lim_(δ→0) (∫_0 ^(2−δ) (dx/(4−x^2 ))+∫_(2+δ) ^∞ (dx/(4−x^2 )))=  =lim_(δ→0) ((1/4)((ln ∣4−δ∣ −ln ∣−δ∣)−(ln ∣2∣ −ln ∣−2∣)+       +(lim_(x→∞) (ln ∣x+2∣ −ln ∣x−2∣)−(ln ∣4+δ∣ −ln ∣δ∣)=0  (as one can easily see)

$$\int\frac{{dx}}{\mathrm{4}−{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{ln}\:\mid{x}+\mathrm{2}\mid\:−\mathrm{ln}\:\mid{x}−\mathrm{2}\mid\right)\:+{C} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{for}\:{x}=\pm\mathrm{2} \\ $$$$\mathrm{Cauchy}\:\mathrm{Principal}\:\mathrm{Value}: \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dx}}{\mathrm{4}−{x}^{\mathrm{2}} }=\underset{\delta\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\underset{\mathrm{0}} {\overset{\mathrm{2}−\delta} {\int}}\frac{{dx}}{\mathrm{4}−{x}^{\mathrm{2}} }+\underset{\mathrm{2}+\delta} {\overset{\infty} {\int}}\frac{{dx}}{\mathrm{4}−{x}^{\mathrm{2}} }\right)= \\ $$$$=\underset{\delta\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{4}}\left(\left(\mathrm{ln}\:\mid\mathrm{4}−\delta\mid\:−\mathrm{ln}\:\mid−\delta\mid\right)−\left(\mathrm{ln}\:\mid\mathrm{2}\mid\:−\mathrm{ln}\:\mid−\mathrm{2}\mid\right)+\right.\right. \\ $$$$\:\:\:\:\:+\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{ln}\:\mid{x}+\mathrm{2}\mid\:−\mathrm{ln}\:\mid{x}−\mathrm{2}\mid\right)−\left(\mathrm{ln}\:\mid\mathrm{4}+\delta\mid\:−\mathrm{ln}\:\mid\delta\mid\right)=\mathrm{0}\right. \\ $$$$\left(\mathrm{as}\:\mathrm{one}\:\mathrm{can}\:\mathrm{easily}\:\mathrm{see}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com