Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 5081 by FilupSmith last updated on 10/Apr/16

Can we prove:  a+a^a +a^a^a  +...=∞,  a>1

$$\mathrm{Can}\:\mathrm{we}\:\mathrm{prove}: \\ $$ $${a}+{a}^{{a}} +{a}^{{a}^{{a}} } +...=\infty,\:\:{a}>\mathrm{1} \\ $$

Answered by Yozzii last updated on 11/Apr/16

Define the function f that maps   members of N+{0} to the n−th self−exponentiation  of a>1, satisfying f(n+1)=a^(f(n)) ,f(0)=a. For example  f(1)=a^(f(0)) =a^a  and f(2)=a^(f(1)) =a^a^a  .  Further define the sum S of the first  n outputs of f; i.e S(n)=Σ_(i=1) ^n f(i) or  S(n)=a+a^a +a^a^a  +...+a^(⋮^a    (n−1 times self−exponentiation of a)) .  Suppose for contradiction that   lim_(n→∞) S(n) is finite. Then, ∃N∈N such  that for all n>N, S(N+1)=S(N+2)=...=S(n)=... .  Now, S(n) satisfies the recurrence  equation S(n)−S(n−1)=f(n).  Since a>1, then f(n)>0 for all n.  ⇒S(n)−S(n−1)>0 or S(n)>S(n−1) for all n∈N.  But, by the condition of convergence  for sufficiently large n, S(n)=S(n−1).  This is a contradiction that indicates  lim_(n→∞) S(n) is nonfinite and in particular  S(n)>S(n−1) so that S(n) is divergent.  a+a^a +a^a^a  +... is infinitely large in  value.

$${Define}\:{the}\:{function}\:{f}\:{that}\:{maps}\: \\ $$ $${members}\:{of}\:\mathbb{N}+\left\{\mathrm{0}\right\}\:{to}\:{the}\:\mathrm{n}−{th}\:{self}−{exponentiation} \\ $$ $${of}\:{a}>\mathrm{1},\:{satisfying}\:{f}\left({n}+\mathrm{1}\right)={a}^{{f}\left({n}\right)} ,{f}\left(\mathrm{0}\right)={a}.\:{For}\:{example} \\ $$ $${f}\left(\mathrm{1}\right)={a}^{{f}\left(\mathrm{0}\right)} ={a}^{{a}} \:{and}\:{f}\left(\mathrm{2}\right)={a}^{{f}\left(\mathrm{1}\right)} ={a}^{{a}^{{a}} } . \\ $$ $${Further}\:{define}\:{the}\:{sum}\:{S}\:{of}\:{the}\:{first} \\ $$ $${n}\:{outputs}\:{of}\:{f};\:{i}.{e}\:{S}\left({n}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{f}\left({i}\right)\:{or} \\ $$ $${S}\left({n}\right)={a}+{a}^{{a}} +{a}^{{a}^{{a}} } +...+{a}^{\vdots^{{a}} \:\:\:\left({n}−\mathrm{1}\:{times}\:{self}−{exponentiation}\:{of}\:{a}\right)} . \\ $$ $${Suppose}\:{for}\:{contradiction}\:{that}\: \\ $$ $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}\left({n}\right)\:{is}\:{finite}.\:{Then},\:\exists{N}\in\mathbb{N}\:{such} \\ $$ $${that}\:{for}\:{all}\:{n}>{N},\:{S}\left({N}+\mathrm{1}\right)={S}\left({N}+\mathrm{2}\right)=...={S}\left({n}\right)=...\:. \\ $$ $${Now},\:{S}\left({n}\right)\:{satisfies}\:{the}\:{recurrence} \\ $$ $${equation}\:{S}\left({n}\right)−{S}\left({n}−\mathrm{1}\right)={f}\left({n}\right). \\ $$ $${Since}\:{a}>\mathrm{1},\:{then}\:{f}\left({n}\right)>\mathrm{0}\:{for}\:{all}\:{n}. \\ $$ $$\Rightarrow{S}\left({n}\right)−{S}\left({n}−\mathrm{1}\right)>\mathrm{0}\:{or}\:{S}\left({n}\right)>{S}\left({n}−\mathrm{1}\right)\:{for}\:{all}\:{n}\in\mathbb{N}. \\ $$ $${But},\:{by}\:{the}\:{condition}\:{of}\:{convergence} \\ $$ $${for}\:{sufficiently}\:{large}\:{n},\:{S}\left({n}\right)={S}\left({n}−\mathrm{1}\right). \\ $$ $${This}\:{is}\:{a}\:{contradiction}\:{that}\:{indicates} \\ $$ $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}\left({n}\right)\:{is}\:{nonfinite}\:{and}\:{in}\:{particular} \\ $$ $${S}\left({n}\right)>{S}\left({n}−\mathrm{1}\right)\:{so}\:{that}\:{S}\left({n}\right)\:{is}\:{divergent}. \\ $$ $${a}+{a}^{{a}} +{a}^{{a}^{{a}} } +...\:{is}\:{infinitely}\:{large}\:{in} \\ $$ $${value}.\: \\ $$ $$ \\ $$ $$ \\ $$

Commented byFilupSmith last updated on 11/Apr/16

Amazing proof!!

$${A}\mathrm{mazing}\:\mathrm{proof}!! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com