Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 50818 by ajfour last updated on 20/Dec/18

If a right angled triangle has  same area and double perimeter  as that of a circle of unit radius,  find the mutually perpendicular  sides of the triangle.

$${If}\:{a}\:{right}\:{angled}\:{triangle}\:{has} \\ $$$${same}\:{area}\:{and}\:{double}\:{perimeter} \\ $$$${as}\:{that}\:{of}\:{a}\:{circle}\:{of}\:{unit}\:{radius}, \\ $$$${find}\:{the}\:{mutually}\:{perpendicular} \\ $$$${sides}\:{of}\:{the}\:{triangle}. \\ $$

Answered by mr W last updated on 20/Dec/18

(1/2)ab=π×1^2   ⇒ab=2π  a+b+(√(a^2 +b^2 ))=2×2π×1  ⇒a+b+(√(a^2 +b^2 ))=4π  ⇒a^2 +b^2 =16π^2 −8π(a+b)+a^2 +b^2 +2ab  ⇒0=16π^2 −8π(a+b)+4π  ⇒a+b=2π+(1/2)  ⇒x^2 −(2π+(1/2))x+2π=0  ⇒x=((4π+1±(√((4π+1)^2 −32π)))/4)  ⇒a,b=((4π+1±(√((4π+1)^2 −32π)))/4)

$$\frac{\mathrm{1}}{\mathrm{2}}{ab}=\pi×\mathrm{1}^{\mathrm{2}} \\ $$$$\Rightarrow{ab}=\mathrm{2}\pi \\ $$$${a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\mathrm{2}×\mathrm{2}\pi×\mathrm{1} \\ $$$$\Rightarrow{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\mathrm{4}\pi \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{16}\pi^{\mathrm{2}} −\mathrm{8}\pi\left({a}+{b}\right)+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab} \\ $$$$\Rightarrow\mathrm{0}=\mathrm{16}\pi^{\mathrm{2}} −\mathrm{8}\pi\left({a}+{b}\right)+\mathrm{4}\pi \\ $$$$\Rightarrow{a}+{b}=\mathrm{2}\pi+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\left(\mathrm{2}\pi+\frac{\mathrm{1}}{\mathrm{2}}\right){x}+\mathrm{2}\pi=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{4}\pi+\mathrm{1}\pm\sqrt{\left(\mathrm{4}\pi+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{32}\pi}}{\mathrm{4}} \\ $$$$\Rightarrow{a},{b}=\frac{\mathrm{4}\pi+\mathrm{1}\pm\sqrt{\left(\mathrm{4}\pi+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{32}\pi}}{\mathrm{4}} \\ $$

Commented by ajfour last updated on 21/Dec/18

Thank you Sir. Quite elegant!

$${Thank}\:{you}\:{Sir}.\:{Quite}\:{elegant}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com