Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 50820 by ajfour last updated on 20/Dec/18

Commented by ajfour last updated on 20/Dec/18

Choose your origin and find   equation of parabola such that  it has maximum length inside  ellipse (parameters a and b).

$${Choose}\:{your}\:{origin}\:{and}\:{find}\: \\ $$$${equation}\:{of}\:{parabola}\:{such}\:{that} \\ $$$${it}\:{has}\:{maximum}\:{length}\:{inside} \\ $$$${ellipse}\:\left({parameters}\:{a}\:{and}\:{b}\right). \\ $$

Answered by ajfour last updated on 21/Dec/18

y=Ax^2 −b  bsin θ = Aa^2 cos^2 θ−b  let  sin θ = t  ⇒  Aa^2 (1−t^2 )−b = bt  other than t=−1      1−t = (b/(Aa^2 ))   ⇒   t=1−(b/(Aa^2 ))  ⇒  bsin θ = y_A  = b−(b^2 /(Aa^2 ))     x = (√((b+y)/A))   ⇒  (dx/dy) = (1/(2(√(A(b+y)))))     L=∫_A ^(  C) dl = 2∫_(−b) ^(  y_A ) (√(1+((dx/dy))^2 )) dy            = 2∫_(−b) ^(  y_A ) (√(1+(1/(4A(b+y))))) dy   (1/2)(dL/dA) = ∫_(−b) ^(  y_A ) (((−(1/(4A^2 (b+y)))))/(2(√(1+(1/(4A(b+y))))))) dy               +(b^2 /(A^2 a^2 ))(√(1+(1/(4A(2b−(b^2 /(Aa^2 )))))))    let I= ∫_(−b) ^(  y_A ) ((1/((b+y)))/(√(1+(1/(4A(b+y)))))) dy        =∫(dz/(√(z^2 +(z/(4A))))) = ∫(dz/(√((z+(1/(2A)))^2 −(1/(4A^2 )))))  =  ln ∣z+c+(√((z+c)^2 −c^2 ))∣+k          where [  c = (1/(2A))   ]  y_A  = b−(b^2 /(Aa^2 ))  ;  z_A =b+y_A =2b−((2b^2 c)/a^2 )  y_B  = −b  ⇒  z_B  = 0  let  z_A +c = t_A  = 2b+(1/(2A))(1−((2b^2 )/a^2 ))         t_B  = z_B +c =(1/(2A))  I = ln ((t_A +(√(t_A ^2 −c^2 )))/t_B )  (dL/dA) = 0   ⇒  (I/(8A^2 )) = (b^2 /(A^2 a^2 ))(√(1+(1/(4A(2b−(b^2 /(Aa^2 )))))))        ⇒ ln ((t_A +(√(t_A ^2 −c^2 )))/t_B ) = ((8b^2 )/a^2 )(√(1+(1/(4At_A ))))  ⇒ In here  c = (1/(2A))  with t_A = 2b+(1/(2A))(1−((2b^2 )/a^2 ))  ; t_B =(1/(2A))  A is obtainable from above equation.  If  for example  A=0  ⇒ ln (1−((2b^2 )/a^2 )+(√((1−((2b^2 )/a^2 ))^2 −1)))        = ((8b^2 )/a^2 )(√(1+2(1−((2b^2 )/a^2 ))))  ⇒   b = 0   (naturally if within an  ellipse with b→0 , parabola shall  have maximum length if A=0 .

$${y}={Ax}^{\mathrm{2}} −{b} \\ $$$${b}\mathrm{sin}\:\theta\:=\:{Aa}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta−{b} \\ $$$${let}\:\:\mathrm{sin}\:\theta\:=\:{t} \\ $$$$\Rightarrow\:\:{Aa}^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)−{b}\:=\:{bt} \\ $$$${other}\:{than}\:{t}=−\mathrm{1} \\ $$$$\:\:\:\:\mathrm{1}−{t}\:=\:\frac{{b}}{{Aa}^{\mathrm{2}} }\:\:\:\Rightarrow\:\:\:{t}=\mathrm{1}−\frac{{b}}{{Aa}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:{b}\mathrm{sin}\:\theta\:=\:{y}_{{A}} \:=\:{b}−\frac{{b}^{\mathrm{2}} }{{Aa}^{\mathrm{2}} } \\ $$$$\:\:\:{x}\:=\:\sqrt{\frac{{b}+{y}}{{A}}}\:\:\:\Rightarrow\:\:\frac{{dx}}{{dy}}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{A}\left({b}+{y}\right)}} \\ $$$$\:\:\:{L}=\int_{{A}} ^{\:\:{C}} {dl}\:=\:\mathrm{2}\int_{−{b}} ^{\:\:{y}_{{A}} } \sqrt{\mathrm{1}+\left(\frac{{dx}}{{dy}}\right)^{\mathrm{2}} }\:{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2}\int_{−{b}} ^{\:\:{y}_{{A}} } \sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{A}\left({b}+{y}\right)}}\:{dy} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}}\frac{{dL}}{{dA}}\:=\:\int_{−{b}} ^{\:\:{y}_{{A}} } \frac{\left(−\frac{\mathrm{1}}{\mathrm{4}{A}^{\mathrm{2}} \left({b}+{y}\right)}\right)}{\mathrm{2}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{A}\left({b}+{y}\right)}}}\:{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{{b}^{\mathrm{2}} }{{A}^{\mathrm{2}} {a}^{\mathrm{2}} }\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{A}\left(\mathrm{2}{b}−\frac{{b}^{\mathrm{2}} }{{Aa}^{\mathrm{2}} }\right)}} \\ $$$$\:\:{let}\:{I}=\:\int_{−{b}} ^{\:\:{y}_{{A}} } \frac{\frac{\mathrm{1}}{\left({b}+{y}\right)}}{\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{A}\left({b}+{y}\right)}}}\:{dy} \\ $$$$\:\:\:\:\:\:=\int\frac{{dz}}{\sqrt{{z}^{\mathrm{2}} +\frac{{z}}{\mathrm{4}{A}}}}\:=\:\int\frac{{dz}}{\sqrt{\left({z}+\frac{\mathrm{1}}{\mathrm{2}{A}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}{A}^{\mathrm{2}} }}} \\ $$$$=\:\:\mathrm{ln}\:\mid{z}+{c}+\sqrt{\left({z}+{c}\right)^{\mathrm{2}} −{c}^{\mathrm{2}} }\mid+{k} \\ $$$$\:\:\:\:\:\:\:\:{where}\:\left[\:\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{2}{A}}\:\:\:\right] \\ $$$${y}_{{A}} \:=\:{b}−\frac{{b}^{\mathrm{2}} }{{Aa}^{\mathrm{2}} }\:\:;\:\:{z}_{{A}} ={b}+{y}_{{A}} =\mathrm{2}{b}−\frac{\mathrm{2}{b}^{\mathrm{2}} {c}}{{a}^{\mathrm{2}} } \\ $$$${y}_{{B}} \:=\:−{b}\:\:\Rightarrow\:\:{z}_{{B}} \:=\:\mathrm{0} \\ $$$${let}\:\:{z}_{{A}} +{c}\:=\:{t}_{{A}} \:=\:\mathrm{2}{b}+\frac{\mathrm{1}}{\mathrm{2}{A}}\left(\mathrm{1}−\frac{\mathrm{2}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:\:\:{t}_{{B}} \:=\:{z}_{{B}} +{c}\:=\frac{\mathrm{1}}{\mathrm{2}{A}} \\ $$$${I}\:=\:\mathrm{ln}\:\frac{{t}_{{A}} +\sqrt{{t}_{{A}} ^{\mathrm{2}} −{c}^{\mathrm{2}} }}{{t}_{{B}} } \\ $$$$\frac{{dL}}{{dA}}\:=\:\mathrm{0}\:\:\:\Rightarrow \\ $$$$\frac{{I}}{\mathrm{8}{A}^{\mathrm{2}} }\:=\:\frac{{b}^{\mathrm{2}} }{{A}^{\mathrm{2}} {a}^{\mathrm{2}} }\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{A}\left(\mathrm{2}{b}−\frac{{b}^{\mathrm{2}} }{{Aa}^{\mathrm{2}} }\right)}} \\ $$$$\:\:\:\: \\ $$$$\Rightarrow\:\mathrm{ln}\:\frac{{t}_{{A}} +\sqrt{{t}_{{A}} ^{\mathrm{2}} −{c}^{\mathrm{2}} }}{{t}_{{B}} }\:=\:\frac{\mathrm{8}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{At}_{{A}} }} \\ $$$$\Rightarrow\:{In}\:{here}\:\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{2}{A}} \\ $$$${with}\:{t}_{{A}} =\:\mathrm{2}{b}+\frac{\mathrm{1}}{\mathrm{2}{A}}\left(\mathrm{1}−\frac{\mathrm{2}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\:\:;\:{t}_{{B}} =\frac{\mathrm{1}}{\mathrm{2}{A}} \\ $$$${A}\:{is}\:{obtainable}\:{from}\:{above}\:{equation}. \\ $$$${If}\:\:{for}\:{example}\:\:{A}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{ln}\:\left(\mathrm{1}−\frac{\mathrm{2}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\sqrt{\left(\mathrm{1}−\frac{\mathrm{2}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)^{\mathrm{2}} −\mathrm{1}}\right) \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{8}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\sqrt{\mathrm{1}+\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{2}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)} \\ $$$$\Rightarrow\:\:\:{b}\:=\:\mathrm{0}\:\:\:\left({naturally}\:{if}\:{within}\:{an}\right. \\ $$$${ellipse}\:{with}\:{b}\rightarrow\mathrm{0}\:,\:{parabola}\:{shall} \\ $$$${have}\:{maximum}\:{length}\:{if}\:{A}=\mathrm{0}\:. \\ $$

Commented by ajfour last updated on 21/Dec/18

mrW Sir can you cast a glance  please ..

$${mrW}\:{Sir}\:{can}\:{you}\:{cast}\:{a}\:{glance} \\ $$$${please}\:.. \\ $$

Commented by mr W last updated on 21/Dec/18

please check what is c in  ⇒ ln ((t_A +(√(t_A ^2 −c^2 )))/t_B ) = ((8b^2 )/a^2 )(√(1+(1/(4At_A ))))  in this eqn. we should only have a,b, A.

$${please}\:{check}\:{what}\:{is}\:{c}\:{in} \\ $$$$\Rightarrow\:\mathrm{ln}\:\frac{{t}_{{A}} +\sqrt{{t}_{{A}} ^{\mathrm{2}} −{c}^{\mathrm{2}} }}{{t}_{{B}} }\:=\:\frac{\mathrm{8}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{At}_{{A}} }} \\ $$$${in}\:{this}\:{eqn}.\:{we}\:{should}\:{only}\:{have}\:{a},{b},\:{A}. \\ $$

Commented by ajfour last updated on 21/Dec/18

Thank you Sir,  c = (1/(2A)) .

$${Thank}\:{you}\:{Sir},\:\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{2}{A}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com