Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 50856 by peter frank last updated on 21/Dec/18

show that  Σ_(x=0) ^n xp(x)=np given   that p(x)=^n C_x p^x q^(n−x)

showthatnx=0xp(x)=npgiventhatp(x)=nCxpxqnx

Answered by Smail last updated on 21/Dec/18

Q(p)=Σ_(x=0) ^n p(x)=Σ_(x=0) ^n ^n C_x p^x q^(n−x) =(p+q)^n   ((dQ(p))/dp)=Σ_(x=0) ^n ^n C_x (xp^(x−1) )q^(n−x) =n(p+q)^(n−1)   =Σ_(x=0) ^n x^n C_x p^x q^(n−x) ×(1/p)=n(p+q)^(n−1)   =Σ_(x=0) ^n x(^n C_x p^x q^(n−x) )=n(p+q)^(n−1) p  Σ_(x=0) ^n xp(x)=np(p+q)^(n−1)

Q(p)=nx=0p(x)=nx=0nCxpxqnx=(p+q)ndQ(p)dp=nx=0nCx(xpx1)qnx=n(p+q)n1=nx=0xnCxpxqnx×1p=n(p+q)n1=nx=0x(nCxpxqnx)=n(p+q)n1pnx=0xp(x)=np(p+q)n1

Commented by Smail last updated on 21/Dec/18

I think you are missing something.

Ithinkyouaremissingsomething.

Commented by peter frank last updated on 21/Dec/18

thank you

thankyou

Commented by Smail last updated on 22/Dec/18

You are welcome

Youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com