Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 50892 by peter frank last updated on 21/Dec/18

solve the equation  tan 3θcotθ+1=0 for  0≤θ≤180  b)show that if cos 2θ is not zero  then  cos 2θ+sec 2θ=2[((cos^4 θ+sin^4 θ)/(cos^4 θ−sin^4 θ))]  c)find the limit of  ((tan (θ/3))/(3θ)) as θ→0

solvetheequationtan3θcotθ+1=0for0θ180b)showthatifcos2θisnotzerothencos2θ+sec2θ=2[cos4θ+sin4θcos4θsin4θ]c)findthelimitoftanθ33θasθ0

Answered by kaivan.ahmadi last updated on 21/Dec/18

((cotθ)/(cot3θ))+1=0⇒((cotθ)/(cot3θ))=−1⇒cotθ=−cot3θ  ⇒cotθ=cot(−3θ)  θ=kπ−3θ⇒θ=((kπ)/4)  θ=(π/4),((3π)/4),((5π)/4),((7π)/4)      2(((cos^4 θ+sin^4 θ)/(cos^4 θ−sin^4 θ)))=2((((cos^2 θ+sin^2 θ)^2 −2sin^2 θcos^2 θ)/((cos^2 θ−sin^2 θ)(cos^2 θ+sin^2 θ))))=  ((2−sin^2 2θ)/(cos2θ))=(((1−sin^2 2θ)+1)/(cos2θ))=((cos^2 2θ+1)/(cos2θ))=cos2θ+sec2θ

cotθcot3θ+1=0cotθcot3θ=1cotθ=cot3θcotθ=cot(3θ)θ=kπ3θθ=kπ4θ=π4,3π4,5π4,7π42(cos4θ+sin4θcos4θsin4θ)=2((cos2θ+sin2θ)22sin2θcos2θ(cos2θsin2θ)(cos2θ+sin2θ))=2sin22θcos2θ=(1sin22θ)+1cos2θ=cos22θ+1cos2θ=cos2θ+sec2θ

Answered by peter frank last updated on 21/Dec/18

((sin 3θcos θ)/(cos 3θsin θ))+1=0  ((sin3θ cos θ+cos 3θsin θ)/(cos 3θsin θ))=0  ((sin 4θ)/(cos 3θsin θ))=0  θ=45 and 135

sin3θcosθcos3θsinθ+1=0sin3θcosθ+cos3θsinθcos3θsinθ=0sin4θcos3θsinθ=0θ=45and135

Answered by peter frank last updated on 21/Dec/18

lim_(x→0) ((sin(θ/3) )/(((cos (θ/3))/(3θ)).))  lim_(x→0) ((sin(θ/3) )/(((cos (θ/3))/(3θ((3/3)))).))q  lim_(x→0) ((sin(θ/3) )/((θ/3).9)).(1/(cos (θ/3)))=lim_(x→0)   1.(1/9)=(1/9)  (1/9)

limx0sinθ3cosθ33θ.limx0sinθ3cosθ33θ(33).qlimx0sinθ3θ3.9.1cosθ3=limx01.19=1919

Terms of Service

Privacy Policy

Contact: info@tinkutara.com