Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 50892 by peter frank last updated on 21/Dec/18

solve the equation  tan 3θcotθ+1=0 for  0≤θ≤180  b)show that if cos 2θ is not zero  then  cos 2θ+sec 2θ=2[((cos^4 θ+sin^4 θ)/(cos^4 θ−sin^4 θ))]  c)find the limit of  ((tan (θ/3))/(3θ)) as θ→0

$${solve}\:{the}\:{equation} \\ $$$$\mathrm{tan}\:\mathrm{3}\theta{cot}\theta+\mathrm{1}=\mathrm{0}\:{for} \\ $$$$\mathrm{0}\leqslant\theta\leqslant\mathrm{180} \\ $$$$\left.{b}\right){show}\:{that}\:{if}\:\mathrm{cos}\:\mathrm{2}\theta\:{is}\:{not}\:{zero} \\ $$$${then} \\ $$$$\mathrm{cos}\:\mathrm{2}\theta+\mathrm{sec}\:\mathrm{2}\theta=\mathrm{2}\left[\frac{\mathrm{cos}\:^{\mathrm{4}} \theta+\mathrm{sin}\:^{\mathrm{4}} \theta}{\mathrm{cos}\:^{\mathrm{4}} \theta−\mathrm{sin}\:^{\mathrm{4}} \theta}\right] \\ $$$$\left.{c}\right){find}\:{the}\:{limit}\:{of} \\ $$$$\frac{\mathrm{tan}\:\frac{\theta}{\mathrm{3}}}{\mathrm{3}\theta}\:{as}\:\theta\rightarrow\mathrm{0} \\ $$$$ \\ $$

Answered by kaivan.ahmadi last updated on 21/Dec/18

((cotθ)/(cot3θ))+1=0⇒((cotθ)/(cot3θ))=−1⇒cotθ=−cot3θ  ⇒cotθ=cot(−3θ)  θ=kπ−3θ⇒θ=((kπ)/4)  θ=(π/4),((3π)/4),((5π)/4),((7π)/4)      2(((cos^4 θ+sin^4 θ)/(cos^4 θ−sin^4 θ)))=2((((cos^2 θ+sin^2 θ)^2 −2sin^2 θcos^2 θ)/((cos^2 θ−sin^2 θ)(cos^2 θ+sin^2 θ))))=  ((2−sin^2 2θ)/(cos2θ))=(((1−sin^2 2θ)+1)/(cos2θ))=((cos^2 2θ+1)/(cos2θ))=cos2θ+sec2θ

$$\frac{\mathrm{cot}\theta}{\mathrm{cot3}\theta}+\mathrm{1}=\mathrm{0}\Rightarrow\frac{\mathrm{cot}\theta}{\mathrm{cot3}\theta}=−\mathrm{1}\Rightarrow\mathrm{cot}\theta=−\mathrm{cot3}\theta \\ $$$$\Rightarrow\mathrm{cot}\theta=\mathrm{cot}\left(−\mathrm{3}\theta\right) \\ $$$$\theta=\mathrm{k}\pi−\mathrm{3}\theta\Rightarrow\theta=\frac{\mathrm{k}\pi}{\mathrm{4}} \\ $$$$\theta=\frac{\pi}{\mathrm{4}},\frac{\mathrm{3}\pi}{\mathrm{4}},\frac{\mathrm{5}\pi}{\mathrm{4}},\frac{\mathrm{7}\pi}{\mathrm{4}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{2}\left(\frac{\mathrm{cos}^{\mathrm{4}} \theta+\mathrm{sin}^{\mathrm{4}} \theta}{\mathrm{cos}^{\mathrm{4}} \theta−\mathrm{sin}^{\mathrm{4}} \theta}\right)=\mathrm{2}\left(\frac{\left(\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{sin}^{\mathrm{2}} \theta\right)^{\mathrm{2}} −\mathrm{2sin}^{\mathrm{2}} \theta\mathrm{cos}^{\mathrm{2}} \theta}{\left(\mathrm{cos}^{\mathrm{2}} \theta−\mathrm{sin}^{\mathrm{2}} \theta\right)\left(\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{sin}^{\mathrm{2}} \theta\right)}\right)= \\ $$$$\frac{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \mathrm{2}\theta}{\mathrm{cos2}\theta}=\frac{\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{2}\theta\right)+\mathrm{1}}{\mathrm{cos2}\theta}=\frac{\mathrm{cos}^{\mathrm{2}} \mathrm{2}\theta+\mathrm{1}}{\mathrm{cos2}\theta}=\mathrm{cos2}\theta+\mathrm{sec2}\theta \\ $$

Answered by peter frank last updated on 21/Dec/18

((sin 3θcos θ)/(cos 3θsin θ))+1=0  ((sin3θ cos θ+cos 3θsin θ)/(cos 3θsin θ))=0  ((sin 4θ)/(cos 3θsin θ))=0  θ=45 and 135

$$\frac{\mathrm{sin}\:\mathrm{3}\theta\mathrm{cos}\:\theta}{\mathrm{cos}\:\mathrm{3}\theta\mathrm{sin}\:\theta}+\mathrm{1}=\mathrm{0} \\ $$$$\frac{\mathrm{sin3}\theta\:\mathrm{cos}\:\theta+\mathrm{cos}\:\mathrm{3}\theta\mathrm{sin}\:\theta}{\mathrm{cos}\:\mathrm{3}\theta\mathrm{sin}\:\theta}=\mathrm{0} \\ $$$$\frac{\mathrm{sin}\:\mathrm{4}\theta}{\mathrm{cos}\:\mathrm{3}\theta\mathrm{sin}\:\theta}=\mathrm{0} \\ $$$$\theta=\mathrm{45}\:{and}\:\mathrm{135} \\ $$

Answered by peter frank last updated on 21/Dec/18

lim_(x→0) ((sin(θ/3) )/(((cos (θ/3))/(3θ)).))  lim_(x→0) ((sin(θ/3) )/(((cos (θ/3))/(3θ((3/3)))).))q  lim_(x→0) ((sin(θ/3) )/((θ/3).9)).(1/(cos (θ/3)))=lim_(x→0)   1.(1/9)=(1/9)  (1/9)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\frac{\theta}{\mathrm{3}}\:}{\frac{\mathrm{cos}\:\frac{\theta}{\mathrm{3}}}{\mathrm{3}\theta}.} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\frac{\theta}{\mathrm{3}}\:}{\frac{\mathrm{cos}\:\frac{\theta}{\mathrm{3}}}{\mathrm{3}\theta\left(\frac{\mathrm{3}}{\mathrm{3}}\right)}.}{q} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\frac{\theta}{\mathrm{3}}\:}{\frac{\theta}{\mathrm{3}}.\mathrm{9}}.\frac{\mathrm{1}}{\mathrm{cos}\:\frac{\theta}{\mathrm{3}}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\mathrm{1}.\frac{\mathrm{1}}{\mathrm{9}}=\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com