Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 50898 by ajfour last updated on 21/Dec/18

Commented by ajfour last updated on 21/Dec/18

If length of BP  is maximum  and equal to l, and the two coloured  areas equal, find a and b of ellipse.

$${If}\:{length}\:{of}\:{BP}\:\:{is}\:{maximum} \\ $$$${and}\:{equal}\:{to}\:\boldsymbol{{l}},\:{and}\:{the}\:{two}\:{coloured} \\ $$$${areas}\:{equal},\:{find}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}\:{of}\:{ellipse}. \\ $$

Answered by ajfour last updated on 21/Dec/18

i got  a = l(√(2−(√2)))   ,  b = l(√(3(√2)−4))  .

$${i}\:{got}\:\:{a}\:=\:{l}\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\:\:\:,\:\:{b}\:=\:{l}\sqrt{\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{4}}\:\:. \\ $$

Commented by mr W last updated on 22/Dec/18

i got the same sir.

$${i}\:{got}\:{the}\:{same}\:{sir}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Dec/18

area sky=(1/2)×acosθ×bsinθ+∫_(bsinθ) ^b (a/b)(√(b^2 −y^2 )) dy  =(a/b)[∣(y/2)(√(b^2 −y^2 )) +(b^2 /2)sin^(−1) ((y/b))∣_(bsinθ) ^b ]+(1/4)sin2θ  =(a/b)[((b^2 /2)×(π/2))−(((bsinθ×bcosθ)/2)+(b^2 /2)θ)]+((sin2θ)/4)  =((πab)/4)−((absin2θ)/4)+((abθ)/2)+((sin2θ)/4)  given A_s =A_p =((πab)/8) at θ=θ_0   ((πab)/8)=((πab)/4)−((absin2θ_0 )/4)+((abθ_0 )/2)+((sin2θ_0 )/4)  sin2θ_0 ×(1/4)(ab−1)−((ab)/2)sin^(−1) ((b^2 /(a^2 −b^2 )))=((πab)/8)          length BP=(√((acosθ−0)^2 +(bsinθ+b)^2 )) =s  s_(max) =l given  s^2 =a^2 cos^2 θ+b^2 (1+sinθ)^2   2s×(ds/dθ)=a^2 ×−sin2θ+b^2 ×2(1+sinθ)(cosθ)  2b^2 cosθ+b^2 sin2θ−a^2 sin2θ=0  cosθ[2b^2 +2b^2 sinθ−2a^2 sinθ]=0    cosθ=0  θ=(π/2)←ignored  sinθ_0 =(b^2 /(a^2 −b^2 ))  cosθ_0 =((√((a^2 −b^2 )^2 −b^4 ))/((a^2 −b^2 )))=((√(a^4 −2a^2 b^2 ))/((a^2 −b^2 )))  wait...

$${area}\:{sky}=\frac{\mathrm{1}}{\mathrm{2}}×{acos}\theta×{bsin}\theta+\int_{{bsin}\theta} ^{{b}} \frac{{a}}{{b}}\sqrt{{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }\:{dy} \\ $$$$=\frac{{a}}{{b}}\left[\mid\frac{{y}}{\mathrm{2}}\sqrt{{b}^{\mathrm{2}} −{y}^{\mathrm{2}} }\:+\frac{{b}^{\mathrm{2}} }{\mathrm{2}}{sin}^{−\mathrm{1}} \left(\frac{{y}}{{b}}\right)\mid_{{bsin}\theta} ^{{b}} \right]+\frac{\mathrm{1}}{\mathrm{4}}{sin}\mathrm{2}\theta \\ $$$$=\frac{{a}}{{b}}\left[\left(\frac{{b}^{\mathrm{2}} }{\mathrm{2}}×\frac{\pi}{\mathrm{2}}\right)−\left(\frac{{bsin}\theta×{bcos}\theta}{\mathrm{2}}+\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\theta\right)\right]+\frac{{sin}\mathrm{2}\theta}{\mathrm{4}} \\ $$$$=\frac{\pi{ab}}{\mathrm{4}}−\frac{{absin}\mathrm{2}\theta}{\mathrm{4}}+\frac{{ab}\theta}{\mathrm{2}}+\frac{{sin}\mathrm{2}\theta}{\mathrm{4}} \\ $$$${given}\:{A}_{{s}} ={A}_{{p}} =\frac{\pi{ab}}{\mathrm{8}}\:{at}\:\theta=\theta_{\mathrm{0}} \\ $$$$\frac{\pi{ab}}{\mathrm{8}}=\frac{\pi{ab}}{\mathrm{4}}−\frac{{absin}\mathrm{2}\theta_{\mathrm{0}} }{\mathrm{4}}+\frac{{ab}\theta_{\mathrm{0}} }{\mathrm{2}}+\frac{{sin}\mathrm{2}\theta_{\mathrm{0}} }{\mathrm{4}} \\ $$$${sin}\mathrm{2}\theta_{\mathrm{0}} ×\frac{\mathrm{1}}{\mathrm{4}}\left({ab}−\mathrm{1}\right)−\frac{{ab}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left(\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\right)=\frac{\pi{ab}}{\mathrm{8}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${length}\:{BP}=\sqrt{\left({acos}\theta−\mathrm{0}\right)^{\mathrm{2}} +\left({bsin}\theta+{b}\right)^{\mathrm{2}} }\:={s} \\ $$$${s}_{{max}} ={l}\:{given} \\ $$$${s}^{\mathrm{2}} ={a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} \left(\mathrm{1}+{sin}\theta\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{s}×\frac{{ds}}{{d}\theta}={a}^{\mathrm{2}} ×−{sin}\mathrm{2}\theta+{b}^{\mathrm{2}} ×\mathrm{2}\left(\mathrm{1}+{sin}\theta\right)\left({cos}\theta\right) \\ $$$$\mathrm{2}{b}^{\mathrm{2}} {cos}\theta+{b}^{\mathrm{2}} {sin}\mathrm{2}\theta−{a}^{\mathrm{2}} {sin}\mathrm{2}\theta=\mathrm{0} \\ $$$${cos}\theta\left[\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} {sin}\theta−\mathrm{2}{a}^{\mathrm{2}} {sin}\theta\right]=\mathrm{0}\:\: \\ $$$${cos}\theta=\mathrm{0}\:\:\theta=\frac{\pi}{\mathrm{2}}\leftarrow{ignored} \\ $$$${sin}\theta_{\mathrm{0}} =\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:\:{cos}\theta_{\mathrm{0}} =\frac{\sqrt{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} −{b}^{\mathrm{4}} }}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}=\frac{\sqrt{{a}^{\mathrm{4}} −\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)} \\ $$$${wait}... \\ $$$$\: \\ $$$$\:\: \\ $$$$ \\ $$$$ \\ $$

Answered by mr W last updated on 22/Dec/18

Commented by OTCHRRE ABDULLAI last updated on 22/Dec/18

My  man you are too good  please you arefrom which country?

$${My}\:\:{man}\:{you}\:{are}\:{too}\:{good} \\ $$$${please}\:{you}\:{arefrom}\:{which}\:{country}? \\ $$

Commented by mr W last updated on 22/Dec/18

r^2 =((a^2 b^2 )/(a^2 sin^2  θ+b^2 cos^2  θ))  A_(red) =A_(blue) =((πab)/8)  A_(red) =∫_0 ^θ ((r^2 dθ)/2)=((a^2 b^2 )/2)∫_0 ^θ (dθ/(a^2 sin^2  θ+b^2 cos^2  θ))  =((a^2 b^2 )/2)×((tan^(−1) ((a/b)tan θ))/(ab))  =((ab)/2)×tan^(−1) ((a/b)tan θ)=((πab)/8)  ⇒tan^(−1) ((a/b)tan θ)=(π/4)  ⇒(a/b)tan θ=1  ⇒tan θ=(b/a) ⇒ sin θ=(b/(√(a^2 +b^2 ))) and cos θ=(a/(√(a^2 +b^2 )))  P(r,θ)  r^2 =((a^2 b^2 )/(a^2 sin^2  θ+b^2 cos^2  θ))=((a^2 b^2 )/((2a^2 b^2 )/(a^2 +b^2 )))=((a^2 +b^2 )/2)  (x/a^2 )+(y/b^2 )y′=0  ((r cos θ)/a^2 )+((r sin θ)/b^2 )y′=0  ⇒y′(at P)=−(b^2 /(a^2  tan θ))=−(b/a)=−tan α=−tan θ  ⇒α=θ  ϕ=(π/2)−α=(π/2)−θ  r cos θ=l cos ϕ=l sin θ  ⇒r=l tan θ=((lb)/a)  r sin θ=l sin ϕ−b=l cos θ−b  ⇒r=(l/(tan θ))−(b/(sin θ))  ⇒(l/(tan θ))−(b/(sin θ))=l tan θ  ⇒b=l((1/(tan θ))−tan θ)sin θ=l×((a^2 −b^2 )/(ab))×(b/(√(a^2 +b^2 )))  ⇒l=((ab(√(a^2 +b^2 )))/(a^2 −b^2 ))  r^2 =((l^2 b^2 )/a^2 )=(b^2 /a^2 )×((a^2 b^2 (a^2 +b^2 ))/((a^2 −b^2 )^2 ))=((b^4 (a^2 +b^2 ))/((a^2 −b^2 )^2 ))=((a^2 +b^2 )/2)  ⇒(b^4 /((a^2 −b^2 )^2 ))=(1/2)  ((√2)b^2 )^2 −(a^2 −b^2 )^2 =0  [((√2)+1)b^2 −a^2 ][((√2)−1)b^2 +a^2 ]=0  ⇒a^2 =((√2)+1)b^2   ⇒l=((ab(√(a^2 +b^2 )))/(a^2 −b^2 ))=((ab(√((2+(√2))b^2 )))/((√2)b^2 ))=a(√((2+(√2))/2))  ⇒a=(√(2/(2+(√2)))) l=(√(2−(√2))) l  ⇒b=(a/(√((√2)+1)))=(√((2−(√2))/((√2)+1))) l=(√(3(√2)−4)) l

$${r}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$${A}_{{red}} ={A}_{{blue}} =\frac{\pi{ab}}{\mathrm{8}} \\ $$$${A}_{{red}} =\int_{\mathrm{0}} ^{\theta} \frac{{r}^{\mathrm{2}} {d}\theta}{\mathrm{2}}=\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{\mathrm{2}}\int_{\mathrm{0}} ^{\theta} \frac{{d}\theta}{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$=\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}}{{b}}\mathrm{tan}\:\theta\right)}{{ab}} \\ $$$$=\frac{{ab}}{\mathrm{2}}×\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}}{{b}}\mathrm{tan}\:\theta\right)=\frac{\pi{ab}}{\mathrm{8}} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}}{{b}}\mathrm{tan}\:\theta\right)=\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow\frac{{a}}{{b}}\mathrm{tan}\:\theta=\mathrm{1} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{{b}}{{a}}\:\Rightarrow\:\mathrm{sin}\:\theta=\frac{{b}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:{and}\:\mathrm{cos}\:\theta=\frac{{a}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$${P}\left({r},\theta\right) \\ $$$${r}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}=\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{\frac{\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{{y}}{{b}^{\mathrm{2}} }{y}'=\mathrm{0} \\ $$$$\frac{{r}\:\mathrm{cos}\:\theta}{{a}^{\mathrm{2}} }+\frac{{r}\:\mathrm{sin}\:\theta}{{b}^{\mathrm{2}} }{y}'=\mathrm{0} \\ $$$$\Rightarrow{y}'\left({at}\:{P}\right)=−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \:\mathrm{tan}\:\theta}=−\frac{{b}}{{a}}=−\mathrm{tan}\:\alpha=−\mathrm{tan}\:\theta \\ $$$$\Rightarrow\alpha=\theta \\ $$$$\varphi=\frac{\pi}{\mathrm{2}}−\alpha=\frac{\pi}{\mathrm{2}}−\theta \\ $$$${r}\:\mathrm{cos}\:\theta={l}\:\mathrm{cos}\:\varphi={l}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{r}={l}\:\mathrm{tan}\:\theta=\frac{{lb}}{{a}} \\ $$$${r}\:\mathrm{sin}\:\theta={l}\:\mathrm{sin}\:\varphi−{b}={l}\:\mathrm{cos}\:\theta−{b} \\ $$$$\Rightarrow{r}=\frac{{l}}{\mathrm{tan}\:\theta}−\frac{{b}}{\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\frac{{l}}{\mathrm{tan}\:\theta}−\frac{{b}}{\mathrm{sin}\:\theta}={l}\:\mathrm{tan}\:\theta \\ $$$$\Rightarrow{b}={l}\left(\frac{\mathrm{1}}{\mathrm{tan}\:\theta}−\mathrm{tan}\:\theta\right)\mathrm{sin}\:\theta={l}×\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{ab}}×\frac{{b}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\Rightarrow{l}=\frac{{ab}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${r}^{\mathrm{2}} =\frac{{l}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }×\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{{b}^{\mathrm{4}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\frac{{b}^{\mathrm{4}} }{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\sqrt{\mathrm{2}}{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left[\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right]\left[\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){b}^{\mathrm{2}} +{a}^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){b}^{\mathrm{2}} \\ $$$$\Rightarrow{l}=\frac{{ab}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }=\frac{{ab}\sqrt{\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){b}^{\mathrm{2}} }}{\sqrt{\mathrm{2}}{b}^{\mathrm{2}} }={a}\sqrt{\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{2}}} \\ $$$$\Rightarrow{a}=\sqrt{\frac{\mathrm{2}}{\mathrm{2}+\sqrt{\mathrm{2}}}}\:{l}=\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}\:{l} \\ $$$$\Rightarrow{b}=\frac{{a}}{\sqrt{\sqrt{\mathrm{2}}+\mathrm{1}}}=\sqrt{\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\sqrt{\mathrm{2}}+\mathrm{1}}}\:{l}=\sqrt{\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{4}}\:{l} \\ $$

Commented by ajfour last updated on 22/Dec/18

WOW !

$$\mathscr{W}\mathcal{O}\mathscr{W}\:! \\ $$

Commented by mr W last updated on 22/Dec/18

Commented by mr W last updated on 22/Dec/18

diagram shows the case l=5.

$${diagram}\:{shows}\:{the}\:{case}\:{l}=\mathrm{5}. \\ $$

Commented by ajfour last updated on 22/Dec/18

Too Good Sir, Thanks for confirming.

$${Too}\:{Good}\:{Sir},\:{Thanks}\:{for}\:{confirming}. \\ $$

Commented by OTCHRRE ABDULLAI last updated on 23/Dec/18

You are world best my man   if mathematics is football you will   be messi or Ronaldo i really like   you infact you are now my best   friend

$${You}\:{are}\:{world}\:{best}\:{my}\:{man}\: \\ $$$${if}\:{mathematics}\:{is}\:{football}\:{you}\:{will}\: \\ $$$${be}\:{messi}\:{or}\:{Ronaldo}\:{i}\:{really}\:{like}\: \\ $$$${you}\:{infact}\:{you}\:{are}\:{now}\:{my}\:{best}\: \\ $$$${friend} \\ $$

Commented by peter frank last updated on 22/Dec/18

and physics too

$${and}\:{physics}\:{too} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com