Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 50912 by peter frank last updated on 22/Dec/18

Show that in collision  where kinetic energy is  conserved linear momemtum  is also conserved

$${Show}\:{that}\:{in}\:{collision} \\ $$$${where}\:{kinetic}\:{energy}\:{is} \\ $$$${conserved}\:{linear}\:{momemtum} \\ $$$${is}\:{also}\:{conserved} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Dec/18

K.E=(1/2)mu^2 =(1/2)×(p^2 /m)  p^2 =2mE   [E=K.E and p=momentum]  2p(dp/dE)=2m  2pdp=2mdE  pdp=mdE  dE=0  [K.E conserved]  so dp=0  momentum conserved

$${K}.{E}=\frac{\mathrm{1}}{\mathrm{2}}{mu}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}×\frac{{p}^{\mathrm{2}} }{{m}} \\ $$$${p}^{\mathrm{2}} =\mathrm{2}{mE}\:\:\:\left[{E}={K}.{E}\:{and}\:{p}={momentum}\right] \\ $$$$\mathrm{2}{p}\frac{{dp}}{{dE}}=\mathrm{2}{m} \\ $$$$\mathrm{2}{pdp}=\mathrm{2}{mdE} \\ $$$${pdp}={mdE} \\ $$$${dE}=\mathrm{0}\:\:\left[{K}.{E}\:{conserved}\right]\:\:{so}\:{dp}=\mathrm{0} \\ $$$${momentum}\:{conserved} \\ $$$$ \\ $$

Commented by peter frank last updated on 22/Dec/18

thanks

$${thanks} \\ $$

Answered by peter frank last updated on 22/Dec/18

from  (1/(2  ))m_(1  ) u_(1  ) ^2 +(1/2)m_2 u_(2 ) ^2 =(1/2)m_1 v_(1 ) ^2 +(1/2)m_2 v_(2 ) ^2   m_1 (u_1 ^2 −v_1 ^2 )=m_2 (v_(2 ) ^2 −u_(2  ) ^2 )  m_1 (u_1 −v_1 )(u_1 +v_1 )=m_2 (v_(2 ) −u_(2  ) )(v_2 +u_2 ).....(i)  from  ((v_1 −u_1 )/(u_1 −u_2 ))=e        but e=1  v_2 −v_(1 ) =u_1 −u_2   u_1 +v_1 =v_(2 ) +u_(2    ) ......(ii)  take eqn i)÷(ii) and simplify  m_1 (u_(1 ) −v_1 )=m_2 (v_2 −u_2 )  m_1 u_1 +m_2 u_2 =m_1 v_1 +m_2 v_2

$${from} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\:\:}{m}_{\mathrm{1}\:\:} {u}_{\mathrm{1}\:\:} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{2}} {u}_{\mathrm{2}\:} ^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{1}} {v}_{\mathrm{1}\:} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{2}} {v}_{\mathrm{2}\:} ^{\mathrm{2}} \\ $$$${m}_{\mathrm{1}} \left({u}_{\mathrm{1}} ^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} \right)={m}_{\mathrm{2}} \left({v}_{\mathrm{2}\:} ^{\mathrm{2}} −{u}_{\mathrm{2}\:\:} ^{\mathrm{2}} \right) \\ $$$${m}_{\mathrm{1}} \left({u}_{\mathrm{1}} −{v}_{\mathrm{1}} \right)\left({u}_{\mathrm{1}} +{v}_{\mathrm{1}} \right)={m}_{\mathrm{2}} \left({v}_{\mathrm{2}\:} −{u}_{\mathrm{2}\:\:} \right)\left({v}_{\mathrm{2}} +{u}_{\mathrm{2}} \right).....\left({i}\right) \\ $$$${from} \\ $$$$\frac{{v}_{\mathrm{1}} −{u}_{\mathrm{1}} }{{u}_{\mathrm{1}} −{u}_{\mathrm{2}} }={e}\:\:\:\:\:\:\:\:{but}\:{e}=\mathrm{1} \\ $$$${v}_{\mathrm{2}} −{v}_{\mathrm{1}\:} ={u}_{\mathrm{1}} −{u}_{\mathrm{2}} \\ $$$${u}_{\mathrm{1}} +{v}_{\mathrm{1}} ={v}_{\mathrm{2}\:} +{u}_{\mathrm{2}\:\:\:\:} ......\left({ii}\right) \\ $$$$\left.{take}\:{eqn}\:{i}\right)\boldsymbol{\div}\left({ii}\right)\:{and}\:{simplify} \\ $$$${m}_{\mathrm{1}} \left({u}_{\mathrm{1}\:} −{v}_{\mathrm{1}} \right)={m}_{\mathrm{2}} \left({v}_{\mathrm{2}} −{u}_{\mathrm{2}} \right) \\ $$$${m}_{\mathrm{1}} {u}_{\mathrm{1}} +{m}_{\mathrm{2}} {u}_{\mathrm{2}} ={m}_{\mathrm{1}} {v}_{\mathrm{1}} +{m}_{\mathrm{2}} {v}_{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com