Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 50913 by peter frank last updated on 22/Dec/18

A ball is dropped from  height h.it strikes the ground  and rises,the coefficiate  of restitution being  e  what is the total distance  it moves  and  the time   before it comes to rest?

$${A}\:{ball}\:{is}\:{dropped}\:{from} \\ $$$${height}\:{h}.{it}\:{strikes}\:{the}\:{ground} \\ $$$${and}\:{rises},{the}\:{coefficiate} \\ $$$${of}\:{restitution}\:{being}\:\:{e} \\ $$$${what}\:{is}\:{the}\:{total}\:{distance} \\ $$$${it}\:{moves}\:\:{and}\:\:{the}\:{time}\: \\ $$$${before}\:{it}\:{comes}\:{to}\:{rest}? \\ $$$$ \\ $$$$ \\ $$

Answered by mr W last updated on 22/Dec/18

h_0 =h=initial height  energy of ball before collision is mgh_0   E_(before) =mgh_(before) =(1/2)mv_(before) ^2   after the collision, the speed of the  ball is reduced to v_(after) =ev_(before)   E_(after) =(1/2)mv_(after) ^2 =mgh_(after)   ⇒(h_(after) /h_(before) )=((v_(after) /v_(before) ))^2 =e^2   ⇒h_(after) =e^2  h_(before)   if the max. height of the ball before collision  is h, its max. height after collision is  then e^2 h.    h_1 =e^2 h=max. height after first collision  h_2 =e^2 h_1 =e^4 h=max. height after second collision  .....  total distance covered by the ball is  s=h_0 +2h_1 +2h_2 +....  s=−h_0 +2(h_0 +h_1 +h_2 +....)=−h+2h(1+e^2 +e^4 +....)  =−h+((2h)/(1−e^2 ))=h(((1+e^2 )/(1−e^2 )))    assume a collision takes no time, we  consider only the time of the ball in  air:  t_0 =(√((2h_0 )/g))=(√((2h)/g)) time before first collision  t_1 =2(√((2h_1 )/g))=2e(√((2h)/g)) time between first and second collisions  t_2 =2(√((2h_2 )/g))=2e^2 (√((2h)/g)) time between second and third collisions  .....  total time is  t=t_0 +t_1 +t_2 +....  =−(√((2h)/g))+2(√((2h)/g))(1+e+e^2 +....)  =−(√((2h)/g))+2(√((2h)/g))((1/(1−e)))  =(√((2h)/g))(((1+e)/(1−e)))

$${h}_{\mathrm{0}} ={h}={initial}\:{height} \\ $$$${energy}\:{of}\:{ball}\:{before}\:{collision}\:{is}\:{mgh}_{\mathrm{0}} \\ $$$${E}_{{before}} ={mgh}_{{before}} =\frac{\mathrm{1}}{\mathrm{2}}{mv}_{{before}} ^{\mathrm{2}} \\ $$$${after}\:{the}\:{collision},\:{the}\:{speed}\:{of}\:{the} \\ $$$${ball}\:{is}\:{reduced}\:{to}\:{v}_{{after}} ={ev}_{{before}} \\ $$$${E}_{{after}} =\frac{\mathrm{1}}{\mathrm{2}}{mv}_{{after}} ^{\mathrm{2}} ={mgh}_{{after}} \\ $$$$\Rightarrow\frac{{h}_{{after}} }{{h}_{{before}} }=\left(\frac{{v}_{{after}} }{{v}_{{before}} }\right)^{\mathrm{2}} ={e}^{\mathrm{2}} \\ $$$$\Rightarrow{h}_{{after}} ={e}^{\mathrm{2}} \:{h}_{{before}} \\ $$$${if}\:{the}\:{max}.\:{height}\:{of}\:{the}\:{ball}\:{before}\:{collision} \\ $$$${is}\:{h},\:{its}\:{max}.\:{height}\:{after}\:{collision}\:{is} \\ $$$${then}\:{e}^{\mathrm{2}} {h}. \\ $$$$ \\ $$$${h}_{\mathrm{1}} ={e}^{\mathrm{2}} {h}={max}.\:{height}\:{after}\:{first}\:{collision} \\ $$$${h}_{\mathrm{2}} ={e}^{\mathrm{2}} {h}_{\mathrm{1}} ={e}^{\mathrm{4}} {h}={max}.\:{height}\:{after}\:{second}\:{collision} \\ $$$$..... \\ $$$${total}\:{distance}\:{covered}\:{by}\:{the}\:{ball}\:{is} \\ $$$${s}={h}_{\mathrm{0}} +\mathrm{2}{h}_{\mathrm{1}} +\mathrm{2}{h}_{\mathrm{2}} +.... \\ $$$${s}=−{h}_{\mathrm{0}} +\mathrm{2}\left({h}_{\mathrm{0}} +{h}_{\mathrm{1}} +{h}_{\mathrm{2}} +....\right)=−{h}+\mathrm{2}{h}\left(\mathrm{1}+{e}^{\mathrm{2}} +{e}^{\mathrm{4}} +....\right) \\ $$$$=−{h}+\frac{\mathrm{2}{h}}{\mathrm{1}−{e}^{\mathrm{2}} }={h}\left(\frac{\mathrm{1}+{e}^{\mathrm{2}} }{\mathrm{1}−{e}^{\mathrm{2}} }\right) \\ $$$$ \\ $$$${assume}\:{a}\:{collision}\:{takes}\:{no}\:{time},\:{we} \\ $$$${consider}\:{only}\:{the}\:{time}\:{of}\:{the}\:{ball}\:{in} \\ $$$${air}: \\ $$$${t}_{\mathrm{0}} =\sqrt{\frac{\mathrm{2}{h}_{\mathrm{0}} }{{g}}}=\sqrt{\frac{\mathrm{2}{h}}{{g}}}\:{time}\:{before}\:{first}\:{collision} \\ $$$${t}_{\mathrm{1}} =\mathrm{2}\sqrt{\frac{\mathrm{2}{h}_{\mathrm{1}} }{{g}}}=\mathrm{2}{e}\sqrt{\frac{\mathrm{2}{h}}{{g}}}\:{time}\:{between}\:{first}\:{and}\:{second}\:{collisions} \\ $$$${t}_{\mathrm{2}} =\mathrm{2}\sqrt{\frac{\mathrm{2}{h}_{\mathrm{2}} }{{g}}}=\mathrm{2}{e}^{\mathrm{2}} \sqrt{\frac{\mathrm{2}{h}}{{g}}}\:{time}\:{between}\:{second}\:{and}\:{third}\:{collisions} \\ $$$$..... \\ $$$${total}\:{time}\:{is} \\ $$$${t}={t}_{\mathrm{0}} +{t}_{\mathrm{1}} +{t}_{\mathrm{2}} +.... \\ $$$$=−\sqrt{\frac{\mathrm{2}{h}}{{g}}}+\mathrm{2}\sqrt{\frac{\mathrm{2}{h}}{{g}}}\left(\mathrm{1}+{e}+{e}^{\mathrm{2}} +....\right) \\ $$$$=−\sqrt{\frac{\mathrm{2}{h}}{{g}}}+\mathrm{2}\sqrt{\frac{\mathrm{2}{h}}{{g}}}\left(\frac{\mathrm{1}}{\mathrm{1}−{e}}\right) \\ $$$$=\sqrt{\frac{\mathrm{2}{h}}{{g}}}\left(\frac{\mathrm{1}+{e}}{\mathrm{1}−{e}}\right) \\ $$

Commented by peter frank last updated on 22/Dec/18

sorry sir more explanation with   diagram if possible

$${sorry}\:{sir}\:{more}\:{explanation}\:{with}\: \\ $$$${diagram}\:{if}\:{possible} \\ $$

Commented by peter frank last updated on 22/Dec/18

the ans given is  total distance=((h+he^2 )/(1−e^2 ))  total Time=(√((2h)/g)) [((1+e)/(1−e))]

$${the}\:{ans}\:{given}\:{is} \\ $$$${total}\:{distance}=\frac{{h}+{he}^{\mathrm{2}} }{\mathrm{1}−{e}^{\mathrm{2}} } \\ $$$${total}\:{Time}=\sqrt{\frac{\mathrm{2}{h}}{{g}}}\:\left[\frac{\mathrm{1}+{e}}{\mathrm{1}−{e}}\right] \\ $$

Commented by peter frank last updated on 22/Dec/18

yes sir  its true.thank you  very much

$${yes}\:{sir}\:\:{its}\:{true}.{thank}\:{you} \\ $$$${very}\:{much} \\ $$

Commented by mr W last updated on 23/Dec/18

it′s interesting to know that the ball  will infinitely move down and up,  but all this happens within a limited time  and limited distance.

$${it}'{s}\:{interesting}\:{to}\:{know}\:{that}\:{the}\:{ball} \\ $$$${will}\:{infinitely}\:{move}\:{down}\:{and}\:{up}, \\ $$$${but}\:{all}\:{this}\:{happens}\:{within}\:{a}\:{limited}\:{time} \\ $$$${and}\:{limited}\:{distance}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com