Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 50954 by afachri last updated on 22/Dec/18

i was evaluating   lim_(x→∞)  ((x((x^ )^(1/x)  − 1))/(log x))  and got 0 as the product. is it true, My Fellows ??

$$\mathrm{i}\:\mathrm{was}\:\mathrm{evaluating}\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}\left(\sqrt[{{x}}]{{x}^{} }\:−\:\mathrm{1}\right)}{\mathrm{log}\:{x}} \\ $$$$\mathrm{and}\:\mathrm{got}\:\mathrm{0}\:\mathrm{as}\:\mathrm{the}\:\mathrm{product}.\:\mathrm{is}\:\mathrm{it}\:\mathrm{true},\:\mathrm{My}\:\mathrm{Fellows}\:?? \\ $$

Commented by Abdo msup. last updated on 23/Dec/18

let A(x)=((x( x^(1/x) −1))/(ln(x)))  changement  ln(x)=t give  A(x) =((e^t (  (e^t )^e^(−t)  −1))/t) =((e^t ( e^(t e^(−t) ) −1))/t)  x→+∞ ⇒t→+∞ but A(x)=((e^((1+e^(−t) )t) (1−e^(−t e^(−t) ) ))/t)  e^(−t e^(−t) )   ∼1−t e^(−t)  ⇒1−e^(−t e^(−t) ) ∼t e^(−t)  ⇒  A(x) ∼  ((t e^e^(−t)  )/t) →1  (t→+∞) ⇒lim_(x→+∞) A(x)=1 .

$${let}\:{A}\left({x}\right)=\frac{{x}\left(\:{x}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\right)}{{ln}\left({x}\right)}\:\:{changement}\:\:{ln}\left({x}\right)={t}\:{give} \\ $$$${A}\left({x}\right)\:=\frac{{e}^{{t}} \left(\:\:\left({e}^{{t}} \right)^{{e}^{−{t}} } −\mathrm{1}\right)}{{t}}\:=\frac{{e}^{{t}} \left(\:{e}^{{t}\:{e}^{−{t}} } −\mathrm{1}\right)}{{t}} \\ $$$${x}\rightarrow+\infty\:\Rightarrow{t}\rightarrow+\infty\:{but}\:{A}\left({x}\right)=\frac{{e}^{\left(\mathrm{1}+{e}^{−{t}} \right){t}} \left(\mathrm{1}−{e}^{−{t}\:{e}^{−{t}} } \right)}{{t}} \\ $$$${e}^{−{t}\:{e}^{−{t}} } \:\:\sim\mathrm{1}−{t}\:{e}^{−{t}} \:\Rightarrow\mathrm{1}−{e}^{−{t}\:{e}^{−{t}} } \sim{t}\:{e}^{−{t}} \:\Rightarrow \\ $$$${A}\left({x}\right)\:\sim\:\:\frac{{t}\:{e}^{{e}^{−{t}} } }{{t}}\:\rightarrow\mathrm{1}\:\:\left({t}\rightarrow+\infty\right)\:\Rightarrow{lim}_{{x}\rightarrow+\infty} {A}\left({x}\right)=\mathrm{1}\:. \\ $$

Commented by afachri last updated on 24/Dec/18

thnk you Sir

$$\mathrm{thnk}\:\mathrm{you}\:\mathrm{Sir} \\ $$

Answered by Smail last updated on 22/Dec/18

lim_(x→∞) ((x(e^((lnx)/x) −1))/(lnx))=L  let t=(1/x)  L=lim_(t→0^+ ) ((e^(−tlnt) −1)/(−tlnt))=((1+(−tlnt)−1)/(−tlnt))=1

$$\underset{{x}\rightarrow\infty} {{lim}}\frac{{x}\left({e}^{\frac{{lnx}}{{x}}} −\mathrm{1}\right)}{{lnx}}={L} \\ $$$${let}\:{t}=\frac{\mathrm{1}}{{x}} \\ $$$${L}=\underset{{t}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{{e}^{−{tlnt}} −\mathrm{1}}{−{tlnt}}=\frac{\mathrm{1}+\left(−{tlnt}\right)−\mathrm{1}}{−{tlnt}}=\mathrm{1} \\ $$

Commented by afachri last updated on 22/Dec/18

Thanks alot for answer Mr Smail. i will   figure to understand it. thank you very  much.

$$\mathrm{Thanks}\:\mathrm{alot}\:\mathrm{for}\:\mathrm{answer}\:\mathrm{Mr}\:\mathrm{Smail}.\:\mathrm{i}\:\mathrm{will}\: \\ $$$$\mathrm{figure}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{it}.\:\mathrm{thank}\:\mathrm{you}\:\mathrm{very} \\ $$$$\mathrm{much}. \\ $$

Commented by afachri last updated on 22/Dec/18

Mr Smail, why (1/(log x)) = (1/(ln x ))  ????  I think they have different basic log   number. Would you be kind explain  to me ????

$$\mathrm{Mr}\:\mathrm{Smail},\:\mathrm{why}\:\frac{\mathrm{1}}{\mathrm{log}\:{x}}\:=\:\frac{\mathrm{1}}{\mathrm{ln}\:{x}\:}\:\:???? \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{they}\:\mathrm{have}\:\mathrm{different}\:\mathrm{basic}\:\mathrm{log}\: \\ $$$$\mathrm{number}.\:\mathrm{Would}\:\mathrm{you}\:\mathrm{be}\:\mathrm{kind}\:\mathrm{explain} \\ $$$$\mathrm{to}\:\mathrm{me}\:???? \\ $$

Commented by Smail last updated on 23/Dec/18

Some people use log instead of ln, so I thought   that you did the same here.  log(x)=log_(10) (x)=((lnx)/(ln(10)))  So the answer would be  lim_(t→0^+ ) ((e^(−tlnt) −1)/(−t((ln(t))/(ln(10)))))=lim_(t→0^+ ) ((1−tlnt−1)/(−tlnt))×ln(10)  =ln(10)

$${Some}\:{people}\:{use}\:{log}\:{instead}\:{of}\:{ln},\:{so}\:{I}\:{thought}\: \\ $$$${that}\:{you}\:{did}\:{the}\:{same}\:{here}. \\ $$$${log}\left({x}\right)={log}_{\mathrm{10}} \left({x}\right)=\frac{{lnx}}{{ln}\left(\mathrm{10}\right)} \\ $$$${So}\:{the}\:{answer}\:{would}\:{be} \\ $$$$\underset{{t}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{{e}^{−{tlnt}} −\mathrm{1}}{−{t}\frac{{ln}\left({t}\right)}{{ln}\left(\mathrm{10}\right)}}=\underset{{t}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{\mathrm{1}−{tlnt}−\mathrm{1}}{−{tlnt}}×{ln}\left(\mathrm{10}\right) \\ $$$$={ln}\left(\mathrm{10}\right) \\ $$

Commented by afachri last updated on 23/Dec/18

Ok thank you Mr Smail. :)

$$\left.\mathrm{Ok}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{Mr}\:\mathrm{Smail}.\::\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com