Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 51107 by peter frank last updated on 24/Dec/18

A ball is bouncing down  a flight of stairs.The   coefficiate of restitution  is e.The height of each step  d and the ball descends  one step at each bounce.  After each bounce it rebounds  to heigt  h above the next  lower step.The height h is/  large enough compare with  width of a step that  the empacts are effectively   head on.show that  h=(d/(1−e^2 ))

$${A}\:{ball}\:{is}\:{bouncing}\:{down} \\ $$$${a}\:{flight}\:{of}\:{stairs}.{The}\: \\ $$$${coefficiate}\:{of}\:{restitution} \\ $$$${is}\:{e}.{The}\:{height}\:{of}\:{each}\:{step} \\ $$$${d}\:{and}\:{the}\:{ball}\:{descends} \\ $$$${one}\:{step}\:{at}\:{each}\:{bounce}. \\ $$$${After}\:{each}\:{bounce}\:{it}\:{rebounds} \\ $$$${to}\:{heigt}\:\:{h}\:{above}\:{the}\:{next} \\ $$$${lower}\:{step}.{The}\:{height}\:{h}\:{is}/ \\ $$$${large}\:{enough}\:{compare}\:{with} \\ $$$${width}\:{of}\:{a}\:{step}\:{that} \\ $$$${the}\:{empacts}\:{are}\:{effectively}\: \\ $$$${head}\:{on}.{show}\:{that} \\ $$$${h}=\frac{{d}}{\mathrm{1}−{e}^{\mathrm{2}} } \\ $$$$ \\ $$

Commented by peter frank last updated on 24/Dec/18

sir we are given that the ball descend  one step at each bounce.so   ball falls a distance h from  its heighest  position and   rebounds to a distance  (h−d) i think.

$${sir}\:{we}\:{are}\:{given}\:{that}\:{the}\:{ball}\:{descend} \\ $$$${one}\:{step}\:{at}\:{each}\:{bounce}.{so}\: \\ $$$${ball}\:{falls}\:{a}\:{distance}\:{h}\:{from} \\ $$$${its}\:{heighest}\:\:{position}\:{and}\: \\ $$$${rebounds}\:{to}\:{a}\:{distance} \\ $$$$\left({h}−{d}\right)\:{i}\:{think}. \\ $$

Answered by mr W last updated on 24/Dec/18

height of the ball before rebound: h  height of the ball after rebound: h−d  velocity of the ball before rebound: v_(before)   velocity of the ball after rebound: v_(after)   E_(before) =mgh=(1/2)mv_(before) ^2   E_(after) =mg(h−d)=(1/2)mv_(after) ^2   ⇒((h−d)/h)=((v_(after) /v_(before) ))^2   since v_(after) =ev_(before)   ⇒((h−d)/h)=e^2   ⇒h−d=e^2 h  ⇒h=(d/(1−e^2 ))

$${height}\:{of}\:{the}\:{ball}\:{before}\:{rebound}:\:{h} \\ $$$${height}\:{of}\:{the}\:{ball}\:{after}\:{rebound}:\:{h}−{d} \\ $$$${velocity}\:{of}\:{the}\:{ball}\:{before}\:{rebound}:\:{v}_{{before}} \\ $$$${velocity}\:{of}\:{the}\:{ball}\:{after}\:{rebound}:\:{v}_{{after}} \\ $$$${E}_{{before}} ={mgh}=\frac{\mathrm{1}}{\mathrm{2}}{mv}_{{before}} ^{\mathrm{2}} \\ $$$${E}_{{after}} ={mg}\left({h}−{d}\right)=\frac{\mathrm{1}}{\mathrm{2}}{mv}_{{after}} ^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{h}−{d}}{{h}}=\left(\frac{{v}_{{after}} }{{v}_{{before}} }\right)^{\mathrm{2}} \\ $$$${since}\:{v}_{{after}} ={ev}_{{before}} \\ $$$$\Rightarrow\frac{{h}−{d}}{{h}}={e}^{\mathrm{2}} \\ $$$$\Rightarrow{h}−{d}={e}^{\mathrm{2}} {h} \\ $$$$\Rightarrow{h}=\frac{{d}}{\mathrm{1}−{e}^{\mathrm{2}} } \\ $$

Answered by peter frank last updated on 24/Dec/18

e=((velocity of separation)/(velocity of approach))  e=((√(2g(h−d)))/(√(2gh)))  e(√(2gh)) =(√(2g(h−d)))   e^2 .2gh=2g(h−d)  e^2 .2gh=2gh−2gd  e^2 =1−(d/h)  1−e^2 =(d/h)  h=(d/(1−e^2 ))  hence shown

$${e}=\frac{{velocity}\:{of}\:{separation}}{{velocity}\:{of}\:{approach}} \\ $$$${e}=\frac{\sqrt{\mathrm{2}{g}\left({h}−{d}\right)}}{\sqrt{\mathrm{2}{gh}}} \\ $$$${e}\sqrt{\mathrm{2}{gh}}\:=\sqrt{\mathrm{2}{g}\left({h}−{d}\right)}\: \\ $$$${e}^{\mathrm{2}} .\mathrm{2}{gh}=\mathrm{2}{g}\left({h}−{d}\right) \\ $$$${e}^{\mathrm{2}} .\mathrm{2}{gh}=\mathrm{2}{gh}−\mathrm{2}{gd} \\ $$$${e}^{\mathrm{2}} =\mathrm{1}−\frac{{d}}{{h}} \\ $$$$\mathrm{1}−{e}^{\mathrm{2}} =\frac{{d}}{{h}} \\ $$$${h}=\frac{{d}}{\mathrm{1}−{e}^{\mathrm{2}} } \\ $$$${hence}\:{shown} \\ $$$$ \\ $$

Commented by mr W last updated on 24/Dec/18

sorry, i misread the information about h.  now it′s fixed.

$${sorry},\:{i}\:{misread}\:{the}\:{information}\:{about}\:{h}. \\ $$$${now}\:{it}'{s}\:{fixed}. \\ $$

Commented by peter frank last updated on 24/Dec/18

okay sir.

$${okay}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com