Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 5113 by FilupSmith last updated on 14/Apr/16

How do you find the:  (1)  Focal point  (2)  Directrix  for y=ax^2 +bx+c    For simplicity, lets assume it goes throigh  point (0, 0).

$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{the}: \\ $$$$\left(\mathrm{1}\right)\:\:\mathrm{Focal}\:\mathrm{point} \\ $$$$\left(\mathrm{2}\right)\:\:\mathrm{Directrix} \\ $$$$\mathrm{for}\:{y}={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$ \\ $$$$\mathrm{For}\:\mathrm{simplicity},\:\mathrm{lets}\:\mathrm{assume}\:\mathrm{it}\:\mathrm{goes}\:\mathrm{throigh} \\ $$$$\mathrm{point}\:\left(\mathrm{0},\:\mathrm{0}\right). \\ $$

Answered by Yozzii last updated on 14/Apr/16

For a parabola of the form 4py=x^2 ,   its focus is F(0,p) and its directrix is  given by y=−p.   We can rewrite y=ax^2 +bx+c as  y=a(x+(b/(2a)))^2 +c−(b^2 /(4a))  or (1/a)(y+(b^2 /(4a))−c)=(x+(b/(2a)))^2 .  Let J=y+(b^2 /(4a))−c, N=x+(b/(2a)).  (1/a)J=N^2 . J and N represent the   coordinate system (N,J).   ⇒4p=(1/a)⇒p=(1/(4a)). So, in (N,J) coordinates  F(0,(1/(4a))) and directrix J=−(1/(4a)). Since N=x+(b/(2a))  and J=y+(b^2 /(4a))−c we can convert back  to xy−coordinates giving   F(−(b/(2a)),((1−b^2 )/(4a))+c) and directrix y=c−((1+b^2 )/(4a)).

$${For}\:{a}\:{parabola}\:{of}\:{the}\:{form}\:\mathrm{4}{py}={x}^{\mathrm{2}} ,\: \\ $$$${its}\:{focus}\:{is}\:{F}\left(\mathrm{0},{p}\right)\:{and}\:{its}\:{directrix}\:{is} \\ $$$${given}\:{by}\:{y}=−{p}.\: \\ $$$${We}\:{can}\:{rewrite}\:{y}={ax}^{\mathrm{2}} +{bx}+{c}\:{as} \\ $$$${y}={a}\left({x}+\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} +{c}−\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}} \\ $$$${or}\:\frac{\mathrm{1}}{{a}}\left({y}+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}}−{c}\right)=\left({x}+\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} . \\ $$$${Let}\:{J}={y}+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}}−{c},\:{N}={x}+\frac{{b}}{\mathrm{2}{a}}. \\ $$$$\frac{\mathrm{1}}{{a}}{J}={N}^{\mathrm{2}} .\:{J}\:{and}\:{N}\:{represent}\:{the}\: \\ $$$${coordinate}\:{system}\:\left({N},{J}\right).\: \\ $$$$\Rightarrow\mathrm{4}{p}=\frac{\mathrm{1}}{{a}}\Rightarrow{p}=\frac{\mathrm{1}}{\mathrm{4}{a}}.\:{So},\:{in}\:\left({N},{J}\right)\:{coordinates} \\ $$$${F}\left(\mathrm{0},\frac{\mathrm{1}}{\mathrm{4}{a}}\right)\:{and}\:{directrix}\:{J}=−\frac{\mathrm{1}}{\mathrm{4}{a}}.\:{Since}\:{N}={x}+\frac{{b}}{\mathrm{2}{a}} \\ $$$${and}\:{J}={y}+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}}−{c}\:{we}\:{can}\:{convert}\:{back} \\ $$$${to}\:{xy}−{coordinates}\:{giving}\: \\ $$$${F}\left(−\frac{{b}}{\mathrm{2}{a}},\frac{\mathrm{1}−{b}^{\mathrm{2}} }{\mathrm{4}{a}}+{c}\right)\:{and}\:{directrix}\:{y}={c}−\frac{\mathrm{1}+{b}^{\mathrm{2}} }{\mathrm{4}{a}}. \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com